67 research outputs found

    Cognition visuelle chez l'abeille Apis mellifera : catégorisation par extraction de configurations spatiales et de concepts relationnels

    Get PDF
    Dans ce travail nous avons étudié la sophistication cognitive dont est capable l'abeille domestique Apis mellifera dans l'analyse de son environnement visuel. Grâce à la mise en place d'une procédure expérimentale d'apprentissage permettant de mettre en évidence les performances fines de discrimination visuelle des abeilles, nous avons étudié la classification de stimuli visuels par catégorisation et formation de concepts. Dans le premier cas, les abeilles groupent des objets visuels en fonction de leur appartenance à une catégorie définie par une similarité perceptive; dans le deuxième cas, les abeilles regroupent les stimuli visuels à partir de règles abstraites (ex: 'plus grand que') et non de leurs propriétés physiques. Nous avons étudié en particulier la catégorisation de stimuli sur la base d'une configuration de type " visage ". Nous montrons que cet insecte peut extraire les relations entre les éléments d'un visage schématique et les combiner de façon à définir une catégorie. Ainsi, la présence de cette configuration permet de traiter de nouveaux stimuli comme appartenant à la catégorie d'intérêt. L'utilisation de configuration pour reconnaître des objets visuels semble être naturellement utilisée par l'abeille et n'est donc pas seulement induite par un entraînement spécifique. Nous avons par ailleurs étudié l'acquisition par l'abeille de concepts relationnels de nature spatiale tels que " au-dessus " ou " en-dessous ", indépendamment des éléments impliqués dans ces relations. L'abeille s'est de plus montrée capable d'associer deux concepts différents (relation spatiale et différence entre les éléments impliqués dans la relation) dans une règle permettant d'obtenir une récompense, transférable à de nouveaux stimuli physiquement très différents. Ces résultats mettent en évidence un niveau d'analyse et d'abstraction insoupçonné pour un invertébré et ouvrent le débat sur l'architecture neurale minimale requise pour atteindre une telle sophistication cognitive.In this work we studied the cognitive sophistication reached by the honeybee Apis mellifera when analysing its visual environment. Thanks to a new-designed learning protocol allowing better performance of bees' visual discrimination, we studied visual stimuli classification by categorization and concept formation. In the first case, bees grouped visual objects into classes defined by perceptual similarity; in the second case, bees extract abstract rules from visual stimuli (e.g. 'bigger than') instead of their specific physical properties. We studied in particular stimuli categorization based on a "face-like" configuration. We show that this insect can extract relationships between the elements of a schematic face and combine them to define a category. Thus, novel stimuli presenting this configuration would be process as member of the category of interest. Moreover, bees seem to naturally use configuration to recognize visual objects. This processing is thus not only inducing by our training procedure. We also studied the bees' acquisition of spatial relational concepts such as "above" or "below", regardless of the elements involved in these relationships. The bee has, in addition, shown its ability to combine two different concepts (spatial relationship and difference between the elements involved in the relationship) in a rule in order to obtain a reward. This rule is transferable to novel physically different stimuli. These results demonstrate an unsuspected level of analysis and abstraction in an invertebrate and open debate on the neural minimum architecture required to achieve such cognitive complexity

    Molecular studies on genetic variability and plant-pathogens interactions in pearl millet downy mildew (Sclerospora graminicola) pathogen

    Get PDF
    This file contains all choices for each bee during the 50 conditioned choices of the learning phase for both Group 1 and Group 2

    Advances and limitations of visual conditioning protocols in harnessed bees

    No full text
    International audienceBees are excellent invertebrate models for studying visual learning and memory mechanisms, because of their sophisticated visual system and impressive cognitive capacities associated with a relatively simple brain. Visual learning in free-flying bees has been traditionally studied using an operant conditioning paradigm. This well-established protocol, however, can hardly be combined with invasive procedures for studying the neurobiological basis of visual learning. Different efforts have been made to develop protocols in which harnessed honey bees could associate visual cues with reinforcement, though learning performances remain poorer than those obtained with free-flying animals. Especially in the last decade, the intention of improving visual learning performances of harnessed bees led many authors to adopt distinct visual conditioning protocols, altering parameters like harnessing method, nature and duration of visual stimulation, number of trials, inter-trial intervals, among others. As a result, the literature provides data hardly comparable and sometimes contradictory. In the present review, we provide an extensive analysis of the literature available on visual conditioning of harnessed bees, with special emphasis on the comparison of diverse conditioning parameters adopted by different authors. Together with this comparative overview, we discuss how these diverse conditioning parameters could modulate visual learning performances of harnessed bees

    Visual cognition in social insects

    No full text
    Visual learning admits different levels of complexity, from the formation of a simple associative link between a visual stimulus and its outcome, to more sophisticated performances, such as object categorization or rules learning, that allow flexible responses beyond simple forms of learning. Not surprisingly, higher-order forms of visual learning have been studied primarily in vertebrates with larger brains, while simple visual learning has been the focus in animals with small brains such as insects. This dichotomy has recently changed as studies on visual learning in social insects have shown that these animals can master extremely sophisticated tasks. Here we review a spectrum of visual learning forms in social insects, from color and pattern learning, visual attention, and top-down image recognition, to interindividual recognition, conditional discrimination, category learning, and rule extraction. We analyze the necessity and sufficiency of simple associations to account for complex visual learning in Hymenoptera and discuss possible neural mechanisms underlying these visual performances

    Experimental results.

    No full text
    <p>Percentage of choices (mean ± SEM) for the blue colour vs. yellow colour in the non-rewarding tests. The dashed line indicates random choice level. White and black bars show results from individuals of respectively the first and second colony used in this experiment. There was no significantly influence of the colony origin of the tested individuals. Within each treatment, the bars on the left correspond to the naive preference of the test bees without prior exposure to these colours. The bars on the right present colour preference of the same bees after the observation period in which they observed artificial bees displayed in front of the yellow stimuli. The observation period only had a significant influence on bees’ colour preference if the artificial bees were moving and presented as short distance (15 cm) from the observation chamber during the observation phase.</p
    • …
    corecore