7 research outputs found

    Intumescent Silicate Coatings with the Addition of Alkali-Activated Materials

    No full text
    Fireproof inorganic coatings based on sodium silicate solution with intumescent additions were prepared and tested to assess their ability to limit the negative effect of a fire. The intumescent materials were obtained by the alkali activation of waste glass powder (obtained by the grinding of recycled soda-lime culet) and slag (waste resulting from the metallurgical industry). The replacement of talc (used as filler in paint formulation) with the intumescent materials obtained by the alkaline activation of waste glass powder (WGP), determined an increase in the intumescence coefficient (up to 65%) and decreased the activation temperature of this process. To evaluate these coatings’ abilities to prevent or delay the temperature increase in metal structures, the paints were applied on steel plates and tested in direct contact with the flame of a butane burner for 60 min. The coatings prevented the increase in the steel substrate temperature over one considered critical (500°C) for steel mechanical properties; the combination of two coatings, with different intumescence activation temperatures, correlated with the increase in the coating’s thickness, sensibly reduced the rate of temperature increase (up to 75%) in the steel substrate

    Fire Behavior and Adhesion of Magnesium Phosphate Coatings for the Protection of Steel Structures

    No full text
    This paper presents the main properties of magnesium phosphate cements (MPCs) to be used as coatings for passive fire protection of steel structures. The influence of various additions, i.e., waste glass powder, fly ash, a styrene–acrylic dispersion, and expandable graphite, on the fire behavior and the adhesion to steel substrates of magnesium phosphate coatings is presented in this paper. The setting time of studied cements is extended when magnesia, the main component of MPCs, is partially replaced with fly ash or/and waste glass powder. The mineralogical composition of these cements, before and after thermal treatment at 1050 °C, was assessed by X-ray diffraction and could explain the changes in compressive strength, volume, and mass recorded for the thermally treated specimens. The studied magnesium phosphate coatings have a good adherence to the steel substrate (assessed by a pull-off test) both before and after direct contact with a flame (fire test) and decrease the temperature of the steel substrate by 30% with respect to the one recorded for the uncoated steel plate

    Fire Behavior and Adhesion of Magnesium Phosphate Coatings for the Protection of Steel Structures

    No full text
    This paper presents the main properties of magnesium phosphate cements (MPCs) to be used as coatings for passive fire protection of steel structures. The influence of various additions, i.e., waste glass powder, fly ash, a styrene–acrylic dispersion, and expandable graphite, on the fire behavior and the adhesion to steel substrates of magnesium phosphate coatings is presented in this paper. The setting time of studied cements is extended when magnesia, the main component of MPCs, is partially replaced with fly ash or/and waste glass powder. The mineralogical composition of these cements, before and after thermal treatment at 1050 °C, was assessed by X-ray diffraction and could explain the changes in compressive strength, volume, and mass recorded for the thermally treated specimens. The studied magnesium phosphate coatings have a good adherence to the steel substrate (assessed by a pull-off test) both before and after direct contact with a flame (fire test) and decrease the temperature of the steel substrate by 30% with respect to the one recorded for the uncoated steel plate

    Fatty Acid Ethyl Esters (FAEE): A New, Green and Renewable Solvent for the Extraction of Carotenoids from Tomato Waste Products

    No full text
    Currently there is a drive towards the minimisation and reclamation of valuable materials from the waste products of the food and beverage industry. This can be achieved through the extraction of residual nutraceuticals from such materials. Tomato pomace contains carotenoids and other chemicals which can be extracted directly into edible oils to improve the health-giving properties of such oils. We report here a novel green solvent, fatty acid ethyl esters (FAEE), which is significantly more effective than sunflower oil and hexane for the extraction of lycopene and beta-carotene from tomato skin waste. FAEE are a non-toxic renewable resource that is environmentally friendly and to our knowledge has never been used as a vegetal extraction fluid. The efficiency of FAEE extraction was significantly improved relative to both sunflower oil and hexane under ultrasound-assisted extraction (UAE) conditions. In addition, FAEE have the additional and significant advantage that once enriched with the extracted nutraceuticals can be used directly as a food additive

    Novel Chemical Architectures Based on Beta-Cyclodextrin Derivatives Covalently Attached on Polymer Spheres

    No full text
    This study presents the synthesis and characterization of polymer derivatives of beta-cyclodextrin (BCD), obtained by chemical grafting onto spherical polymer particles (200 nm) presenting oxirane functional groups at their surface. The polymer spheres were synthesized by emulsion polymerization of styrene (ST) and hydroxyethyl methacrylate (HEMA), followed by the grafting on the surface of glycidyl methacrylate (GMA) by seeded emulsion polymerization. The BCD-polymer derivatives were obtained using two BCD derivatives with hydroxylic (BCD-OH) and amino groups (BCD-NH2). The degree of polymer covalent functionalization using the BCD-OH and BCD-NH2 derivatives were determined to be 4.27 and 19.19 weight %, respectively. The adsorption properties of the materials were evaluated using bisphenol A as a target molecule. The best fit for the adsorption kinetics was Lagergren’s model (both for Qe value and for R2) together with Weber’s intraparticle diffusion model in the case of ST-HEMA-GMA-BCD-NH2. The isothermal adsorption evaluation indicated that both systems follow a Langmuir type behavior and afforded a Qmax value of 148.37 mg g−1 and 37.09 mg g−1 for ST-HEMA-GMA-BCD-NH2 and ST-HEMA-GMA-BCD-OH, respectively. The BCD-modified polymers display a degradation temperature of over 400 °C which can be attributed to the existence of hydrogen bonds and BCD thermal degradation pathway in the presence of the polymers

    Cosmetic Products with Potential Photoprotective Effects Based on Natural Compounds Extracted from Waste of the Winemaking Industry

    No full text
    Grape marc is a by-product resulting from the winemaking industry that still contains beneficial compounds that can be valorized. Thus, we report here the possibility of using polyphenolic extracts of grape marc origin to obtain sun protection creams. The extractions were performed in ethanol and acetone solutions using pomace from different grape varieties (Merlot, Bläufrankisch, Fetească Neagră, Isabella) as a raw material. The obtained extracts were analyzed in order to determine the total phenolic content, the antioxidant activity, and the sun protection factor (SPF) via Mansur spectrophotometric assay. The best results were achieved using 70% ethanol in water as a solvent. The extracts with the highest potential photoprotective effects are from the Merlot variety (SPFspectrophotometric = 7.83 ± 0.76). The sunscreens were prepared using the 70% ethanolic extract of the Merlot variety evaporated to dryness, redissolved in either distilled water or ethanol. The SPF estimated in vitro via the COLIPA method showed values of 14.07 ± 1.50 and 11.46 ± 1.32 for the aqueous and ethanolic extracts, respectively, when working with a cream to polyphenolic extract a ratio of 1/1 (w/w). At the same time, the use of aqueous polyphenolic extracts ensures the better stability of creams compared with the ethanolic ones

    Bisphenol A Adsorption on Silica Particles Modified with Beta-Cyclodextrins

    No full text
    This study presents the synthesis of silica particles bearing two beta-cyclodextrin (BCD) (beta-cyclodextrin-BCD-OH and diamino butane monosubstituted beta-cyclodextrin-BCD-NH2). The successful synthesis of the BCD-modified silica was confirmed by FT-IR and TGA. Using contact angle measurements, BET analysis and SEM characterization, a possible formation mechanism for the generation of silica particles bearing BCD derivatives on their surface was highlighted. The obtained modified silica displayed the capacity to remove bisphenol A (BPA) from wastewater due to the presence of the BCD moieties on the surface of the silica. The kinetic analysis showed that the adsorption reached equilibrium after 180 min for both materials with qe values of 107 mg BPA/g for SiO2-BCD-OH and 112 mg BPA/g for SiO2-BCD-NH2. The process followed Ho’s pseudo-second-order adsorption model sustaining the presence of adsorption sites with different activities. The fitting of the Freundlich isotherm model on the experimental results was also evaluated, confirming the BCD influence on the materials’ adsorption properties
    corecore