172 research outputs found
Recommended from our members
DNA copy number motifs are strong and independent predictors of survival in breast cancer.
Somatic copy number alterations are a frequent sign of genome instability in cancer. A precise characterization of the genome architecture would reveal underlying instability mechanisms and provide an instrument for outcome prediction and treatment guidance. Here we show that the local spatial behavior of copy number profiles conveys important information about this architecture. Six filters were defined to characterize regional traits in copy number profiles, and the resulting Copy Aberration Regional Mapping Analysis (CARMA) algorithm was applied to tumors in four breast cancer cohorts (n = 2919). The derived motifs represent a layer of information that complements established molecular classifications of breast cancer. A score reflecting presence or absence of motifs provided a highly significant independent prognostic predictor. Results were consistent between cohorts. The nonsite-specific occurrence of the detected patterns suggests that CARMA captures underlying replication and repair defects and could have a future potential in treatment stratification
Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome
Mitochondrial mutations, an important cause of incurable human neuromuscular diseases, are mostly heteroplasmic: mutated mitochondrial DNA is present in cells simultaneously with wild-type genomes, the pathogenic threshold being generally >70% of mutant mtDNA. We studied whether heteroplasmy level could be decreased by specifically designed oligoribonucleotides, targeted into mitochondria by the pathway delivering RNA molecules in vivo. Using mitochondrially imported RNAs as vectors, we demonstrated that oligoribonucleotides complementary to mutant mtDNA region can specifically reduce the proportion of mtDNA bearing a large deletion associated with the Kearns Sayre Syndrome in cultured transmitochondrial cybrid cells. These findings may be relevant to developing of a new tool for therapy of mtDNA associated diseases
Nature and frequency of respiratory involvement in chronic progressive external ophthalmoplegia
Chronic progressive external ophthalmoplegia (CPEO) is a relatively common mitochondrial disorder. Weakness of the extra-ocular, limb girdle and laryngeal muscles are established clinical features. Respiratory muscle involvement however has never been studied systematically, even though respiratory complications are one of the main causes of death. We therefore determined the prevalence and nature of respiratory muscle involvement in 23 patients with genetically confirmed CPEO. The main finding was decreased respiratory muscle strength, both expiratory (76.8% of predicted, p = 0.002) and inspiratory (79.5% of predicted, p = 0.004). Although the inspiratory vital capacity (92.5% of predicted, p = 0.021) and the forced expiratory volume in 1 s (89.3% of predicted, p = 0.002) were below predicted values, both were still within the normal range in the majority of patients. Expiratory weakness was associated with a decreased vital capacity (ρ = 0.502, p = 0.015) and decreased peak expiratory flow (ρ = 0.422, p = 0.045). Moreover, expiratory muscle strength was lower in patients with limb girdle weakness (62.6 ± 26.1% of predicted vs. 98.9 ± 22.5% in patients with normal limb girdle strength, p = 0.003), but was not associated with other clinical features, subjective respiratory complaints, disease severity or disease duration. Since respiratory involvement in CPEO is associated with severe morbidity and mortality, the present data justify periodic assessment of respiratory functions in all CPEO patients
The seasonal dynamics and biting behavior of potential Anopheles vectors of Plasmodium knowlesi in Palawan, Philippines.
BACKGROUND: A small number of human cases of the zoonotic malaria Plasmodium knowlesi have been reported in Palawan Island, the Philippines. Identification of potential vector species and their bionomics is crucial for understanding human exposure risk in this setting. Here, we combined longitudinal surveillance with a trap-evaluation study to address knowledge gaps about the ecology and potential for zoonotic spillover of this macaque malaria in Palawan Island. METHODS: The abundance, diversity and biting behavior of human-biting Anopheles mosquitoes were assessed through monthly outdoor human landing catches (HLC) in three ecotypes representing different land use (forest edge, forest and agricultural area) across 8 months. Additionally, the host preference and biting activity of potential Anopheles vectors were assessed through comparison of their abundance and capture time in traps baited with humans (HLC, human-baited electrocuting net-HEN) or macaques (monkey-baited trap-MBT, monkey-baited electrocuting net-MEN). All female Anopheles mosquitoes were tested for the presence of Plasmodium parasites by PCR. RESULTS: Previously incriminated vectors Anopheles balabacensis and An. flavirostris accounted for > 95% of anophelines caught in longitudinal surveillance. However, human biting densities were relatively low (An. balabacensis: 0.34-1.20 per night, An. flavirostris: 0-2 bites per night). Biting densities of An. balabacensis were highest in the forest edge, while An. flavirostris was most abundant in the agricultural area. The abundance of An. balabacensis and An. flavirostris was significantly higher in HLC than in MBT. None of the 357 female Anopheles mosquitoes tested for Plasmodium infection were positive. CONCLUSIONS: The relatively low density and lack of malaria infection in Anopheles mosquitoes sampled here indicates that exposure to P. knowlesi in this setting is considerably lower than in neighboring countries (i.e. Malaysia), where it is now the primary cause of malaria in humans. Although anophelines had lower abundance in MBTs than in HLCs, An. balabacensis and An. flavirostris were caught by both methods, suggesting they could act as bridge vectors between humans and macaques. These species bite primarily outdoors during the early evening, confirming that insecticide-treated nets are unlikely to provide protection against P. knowlesi vectors
Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland
Author Posting. © The Authors, 2009. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 3 (2010): 182-186, doi:10.1038/ngeo764.The recent rapid increase in mass loss from the Greenland Ice Sheet is primarily
attributed to an acceleration of outlet glaciers. One possible cause is increased
melting at the ice/ocean interface driven by the synchronous warming of
subtropical waters offshore of Greenland. This hypothesis is largely untested,
however, because of the lack of observations from Greenland’s glacial fjords and
our limited understanding of their dynamics. Here, we present new ship-based and
moored oceanographic data, collected in Sermilik Fjord, a large glacial fjord in East
Greenland, showing that subtropical waters are present throughout the fjord and
are continuously replenished via a wind-driven exchange with the shelf, where they
occur year-round. The temperature and rapid renewal of these waters suggest that,
at present, they drive enhanced submarine melting at the terminus. Key controls on
the melting rate are the volume and properties of subtropical waters on the shelf
and the patterns of the along-shore winds, suggesting the glaciers’ acceleration
was triggered by a combination of atmospheric and oceanic changes. These
measurements provide evidence of rapid advective pathway for the transmission of
oceanic variability to the ice-sheet margins and highlight an important process that
is missing from prognostic ice-sheet models.F.S. acknowledges support from WHOI’s Ocean and
Climate Change Institute’s Arctic Research Initiative and from NSF OCE 0751896, and G.S.H and L.A.S
from NASA’s Cryospheric Sciences Program. Funding for the hooded seal deployments was obtained from
the International Governance and Atlantic Seal Research Program, Fisheries and Oceans, Canada, to G. B.
S. and to the Greenland Institute of Natural Resources to A. R. A
Treatment of CoQ10 Deficient Fibroblasts with Ubiquinone, CoQ Analogs, and Vitamin C: Time- and Compound-Dependent Effects
Background: Coenzyme Q(10) (CoQ(10)) and its analogs are used therapeutically by virtue of their functions as electron carriers, antioxidant compounds, or both. However, published studies suggest that different ubiquinone analogs may produce divergent effects on oxidative phosphorylation and oxidative stress.Methodology/Principal Findings: To test these concepts, we have evaluated the effects of CoQ(10), coenzyme Q(2) (CoQ(2)), idebenone, and vitamin C on bioenergetics and oxidative stress in human skin fibroblasts with primary CoQ(10) deficiency. A final concentration of 5 mu M of each compound was chosen to approximate the plasma concentration of CoQ(10) of patients treated with oral ubiquinone. CoQ(10) supplementation for one week but not for 24 hours doubled ATP levels and ATP/ADP ratio in CoQ(10) deficient fibroblasts therein normalizing the bioenergetics status of the cells. Other compounds did not affect cellular bioenergetics. In COQ2 mutant fibroblasts, increased superoxide anion production and oxidative stress-induced cell death were normalized by all supplements.Conclusions/Significance: These results indicate that: 1) pharmacokinetics of CoQ(10) in reaching the mitochondrial respiratory chain is delayed; 2) short-tail ubiquinone analogs cannot replace CoQ(10) in the mitochondrial respiratory chain under conditions of CoQ(10) deficiency; and 3) oxidative stress and cell death can be counteracted by administration of lipophilic or hydrophilic antioxidants. The results of our in vitro experiments suggest that primary CoQ(10) deficiencies should be treated with CoQ(10) supplementation but not with short-tail ubiquinone analogs, such as idebenone or CoQ(2). Complementary administration of antioxidants with high bioavailability should be considered if oxidative stress is present
The Disulfide Bonds in Glycoprotein E2 of Hepatitis C Virus Reveal the Tertiary Organization of the Molecule
Hepatitis C virus (HCV), a major cause of chronic liver disease in humans, is the focus of intense research efforts worldwide. Yet structural data on the viral envelope glycoproteins E1 and E2 are scarce, in spite of their essential role in the viral life cycle. To obtain more information, we developed an efficient production system of recombinant E2 ectodomain (E2e), truncated immediately upstream its trans-membrane (TM) region, using Drosophila melanogaster cells. This system yields a majority of monomeric protein, which can be readily separated chromatographically from contaminating disulfide-linked aggregates. The isolated monomeric E2e reacts with a number of conformation-sensitive monoclonal antibodies, binds the soluble CD81 large external loop and efficiently inhibits infection of Huh7.5 cells by infectious HCV particles (HCVcc) in a dose-dependent manner, suggesting that it adopts a native conformation. These properties of E2e led us to experimentally determine the connectivity of its 9 disulfide bonds, which are strictly conserved across HCV genotypes. Furthermore, circular dichroism combined with infrared spectroscopy analyses revealed the secondary structure contents of E2e, indicating in particular about 28% β-sheet, in agreement with the consensus secondary structure predictions. The disulfide connectivity pattern, together with data on the CD81 binding site and reported E2 deletion mutants, enabled the threading of the E2e polypeptide chain onto the structural template of class II fusion proteins of related flavi- and alphaviruses. The resulting model of the tertiary organization of E2 gives key information on the antigenicity determinants of the virus, maps the receptor binding site to the interface of domains I and III, and provides insight into the nature of a putative fusogenic conformational change
Does trust in health care influence the use of complementary and alternative medicine by chronically ill people?
BACKGROUND: People's trust in health care and health care professionals is essential for the effectiveness of health care, especially for chronically ill people, since chronic diseases are by definition (partly) incurable. Therefore, it may be understandable that chronically ill people turn to complementary and alternative medicine (CAM), often in addition to regular care. Chronically ill people use CAM two to five times more often than non-chronically ill people. The trust of chronically ill people in health care and health care professionals and the relationship of this with CAM use have not been reported until now. In this study, we examine the influence of chronically ill people's trust in health care and health care professionals on CAM use. METHODS: The present sample comprises respondents of the 'Panel of Patients with Chronic Diseases' (PPCD). Patients (≥25 years) were selected by GPs. A total of 1,625 chronically ill people were included. Trust and CAM use was measured by a written questionnaire. Statistical analyses were t tests for independent samples, Chi-square and one-way analysis of variance, and logistic regression analysis. RESULTS: Chronically ill people have a relatively low level of trust in future health care. They trust certified alternative practitioners less than regular health care professionals, and non-certified alternative practitioners less still. The less trust patients have in future health care, the more they will be inclined to use CAM, when controlling for socio-demographic and disease characteristics. CONCLUSION: Trust in future health care is a significant predictor of CAM use. Chronically ill people's use of CAM may increase in the near future. Health policy makers should, therefore, be alert to the quality of practising alternative practitioners, for example by insisting on professional certification. Equally, good quality may increase people's trust in public health care
Integrative clustering reveals a novel split in the luminal A subtype of breast cancer with impact on outcome
Background: Breast cancer is a heterogeneous disease at the clinical and molecular level. In this study we integrate classifications extracted from five different molecular levels in order to identify integrated subtypes. Methods: Tumor tissue from 425 patients with primary breast cancer from the Oslo2 study was cut and blended, and divided into fractions for DNA, RNA and protein isolation and metabolomics, allowing the acquisition of representative and comparable molecular data. Patients were stratified into groups based on their tumor characteristics from five different molecular levels, using various clustering methods. Finally, all previously identified and newly determined subgroups were combined in a multilevel classification using a "cluster-of-clusters" approach with consensus clustering. Results: Based on DNA copy number data, tumors were categorized into three groups according to the complex arm aberration index. mRNA expression profiles divided tumors into five molecular subgroups according to PAM50 subtyping, and clustering based on microRNA expression revealed four subgroups. Reverse-phase protein array data divided tumors into five subgroups. Hierarchical clustering of tumor metabolic profiles revealed three clusters. Combining DNA copy number and mRNA expression classified tumors into seven clusters based on pathway activity levels, and tumors were classified into ten subtypes using integrative clustering. The final consensus clustering that incorporated all aforementioned subtypes revealed six major groups. Five corresponded well with the mRNA subtypes, while a sixth group resulted from a split of the luminal A subtype; these tumors belonged to distinct microRNA clusters. Gain-of-function studies using MCF-7 cells showed that microRNAs differentially expressed between the luminal A clusters were important for cancer cell survival. These microRNAs were used to validate the split in luminal A tumors in four independent breast cancer cohorts. In two cohorts the microRNAs divided tumors into subgroups with significantly different outcomes, and in another a trend was observed. Conclusions: The six integrated subtypes identified confirm the heterogeneity of breast cancer and show that finer subdivisions of subtypes are evident. Increasing knowledge of the heterogeneity of the luminal A subtype may add pivotal information to guide therapeutic choices, evidently bringing us closer to improved treatment for this largest subgroup of breast cancer.Peer reviewe
Author Correction: The landscape of viral associations in human cancers
Correction to: Nature Genetics https://doi.org/10.1038/s41588-019-0558-9, published online 05 February 2020
- …