34 research outputs found

    Formation of functional gap junctions in amniotic fluid-derived stem cells induced by transmembrane co-culture with neonatal rat cardiomyocytes

    Get PDF
    Amniotic fluid-derived stem cells (AFSC) have been reported to differentiate into cardiomyocyte-like cells and form gap junctions when directly mixed and cultured with neonatal rat ventricular myocytes (NRVM). This study investigated whether or not culture of AFSC on the opposite side of a Transwell membrane from NRVM, allowing for contact and communication without confounding factors such as cell fusion, could direct cardiac differentiation and enhance gap junction formation. Results were compared to shared media (Transwell), conditioned media and monoculture media controls. After a 2-week culture period, AFSC did not express cardiac myosin heavy chain or troponin T in any co-culture group. Protein expression of cardiac calsequestrin 2 was up-regulated in direct transmembrane co-cultures and media control cultures compared to the other experimental groups, but all groups were up-regulated compared with undifferentiated AFSC cultures. Gap junction communication, assessed with a scrape-loading dye transfer assay, was significantly increased in direct transmembrane co-cultures compared to all other conditions. Gap junction communication corresponded with increased connexin 43 gene expression and decreased phosphorylation of connexin 43. Our results suggest that direct transmembrane co-culture does not induce cardiomyocyte differentiation of AFSC, though calsequestrin expression is increased. However, direct transmembrane co-culture does enhance connexin-43-mediated gap junction communication between AFSC

    Detection of enterotoxin genes of Staphylococcus sp isolated from nasal cavities and hands of food handlers

    No full text
    Food handlers, an important factor in food quality, may contain bacteria that are able to cause foodborne disease. The present study aimed to research coagulase-negative (CNS) and -positive staphylococci (CPS) in 82 food handlers, analyzing nasal and hand swabs, with identification of 62 CNS (75.6%) and 20 CPS strains (24.4%). Staphylococcal enterotoxins genes were investigated by PCR. In 20 CPS strains, 19 were positive for one or more genes. The percentage of CNS presenting genes for enterotoxins was high (46.8%). Despite of the staphylococcal species, the most common gene was sea (35.4%), followed by seh and sej (29.2%). The detection of new staphylococcal enterotoxins (SEs) genes showed a higher pathogenic potential in this genus. The presence of these gene points out the importance of CNS not only as contaminant bacteria but also as a pathogen.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore