212 research outputs found

    Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet

    Get PDF
    Background The surface of marine animals is covered by abundant and diversified microbial communities, which have major roles for the health of their host. While such microbiomes have been deeply examined in marine invertebrates such as corals and sponges, the microbiomes living on marine vertebrates have received less attention. Specifically, the diversity of these microbiomes, their variability among species, and their drivers are still mostly unknown, especially among the fish species living on coral reefs that contribute to key ecosystem services while they are increasingly affected by human activities. Here, we investigated these knowledge gaps analyzing the skin microbiome of 138 fish individuals belonging to 44 coral reef fish species living in the same area. Results Prokaryotic communities living on the skin of coral reef fishes are highly diverse, with on average more than 600 OTUs per fish, and differ from planktonic microbes. Skin microbiomes varied between fish individual and species, and interspecific differences were slightly coupled to the phylogenetic affiliation of the host and its ecological traits. Conclusions These results highlight that coral reef biodiversity is greater than previously appreciated, since the high diversity of macro-organisms supports a highly diversified microbial community. This suggest that beyond the loss of coral reefs-associated macroscopic species, anthropic activities on coral reefs could also lead to a loss of still unexplored host-associated microbial diversity, which urgently needs to be assessed

    Endothelin-1-induced constriction in the coronary resistance vessels and abdominal aorta of the guinea pig

    Full text link
    The purpose of this study was to examine contractile properties of endothelin-1, a newly discovered vasoactive peptide, in guinea pig coronary resistance vessels and abdominal aorta. Changes in perfusion pressure after injections of endothelin-1 were measured using a constant-flow modified Langendorff preparation. The ED 10 values of coronary perfusion pressure were about 100-fold less for endothelin-1 than for prostaglandin F 2α . After the endothelium was damaged by exposure to free radicals, maximal coronary constriction in response to endothelin-1 (10 −9 moles) was not altered, whereas dilator responses to low doses of endothelin-1 were converted to constrictor responses. Removal of the endothelium from aortic rings significantly increased responsiveness to endothelin-1 and the maximal response to the peptide. In calcium-free medium, endothelin-1 induced small increases both in perfusion pressure in coronary vessles and in tension in the aorta. Reintroduction of calcium in the coronary and aortic preparations produced a rapid increase in perfusion pressure and tension, respectively. Further, endothelin-1-induced coronary constriction was inhibited 59%±7% by nifedipine (10 −7 moles). We conclude that endothelin-1 is a more potent constrictor than prostaglandin F 2α in the coronary vasculature. Endothelin-1-induced constriction in the coronary vasculature of the guinea pig is not mediated through an endogenous constricting factor released from the endothelium or a constrictor prostaglandin. Further, endothelin-1-induced dilation in the coronary vasculature and attenuation of endothelin-1-induced contraction in the abdominal aorta of the guinea pig are mediated through the release of a factor from the endothelium. Endothelin-1-induced coronary constriction and abdominal aortic contraction require extracellular calcium, entering, in part, through nifedipine-sensitive channels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41586/1/380_2005_Article_BF02058691.pd

    Ocean currents shape the microbiome of Arctic marine sediments

    Get PDF
    Prokaryote communities were investigated on the seasonally stratified Alaska Beaufort Shelf (ABS). Water and sediment directly underlying water with origin in the Arctic, Pacific or Atlantic oceans were analyzed by pyrosequencing and length heterogeneity-PCR in conjunction with physicochemical and geographic distance data to determine what features structure ABS microbiomes. Distinct bacterial communities were evident in all water masses. Alphaproteobacteria explained similarity in Arctic surface water and Pacific derived water. Deltaproteobacteria were abundant in Atlantic origin water and drove similarity among samples. Most archaeal sequences in water were related to unclassified marine Euryarchaeota. Sediment communities influenced by Pacific and Atlantic water were distinct from each other and pelagic communities. Firmicutes and Chloroflexi were abundant in sediment, although their distribution varied in Atlantic and Pacific influenced sites. Thermoprotei dominated archaea in Pacific influenced sediments and Methanomicrobia dominated in methane-containing Atlantic influenced sediments. Length heterogeneity-PCR data from this study were analyzed with data from methane-containing sediments in other regions. Pacific influenced ABS sediments clustered with Pacific sites from New Zealand and Chilean coastal margins. Atlantic influenced ABS sediments formed another distinct cluster. Density and salinity were significant structuring features on pelagic communities. Porosity co-varied with benthic community structure across sites and methane did not. This study indicates that the origin of water overlying sediments shapes benthic communities locally and globally and that hydrography exerts greater influence on microbial community structure than the availability of methane

    Effect of TNF-α genetic variants and CCR5Δ32 on the vulnerability to HIV-1 infection and disease progression in Caucasian Spaniards

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor necrosis factor alpha (TNF-α) is thought to be involved in the various immunogenetic events that influence HIV-1 infection.</p> <p>Methods</p> <p>We aimed to determine whether carriage of the <it>TNF-α-238G>A, -308G>A </it>and <it>-863 C>A </it>gene promoter single nucleotide polymorphisms (SNP) and the <it>CCR5Δ32 </it>variant allele influence the risk of HIV-1 infection and disease progression in Caucasian Spaniards. The study group consisted of 423 individuals. Of these, 239 were uninfected (36 heavily exposed but uninfected [EU] and 203 healthy controls [HC]) and 184 were HIV-1-infected (109 typical progressors [TP] and 75 long-term nonprogressors [LTNP] of over 16 years' duration). <it>TNF-α </it>SNP and the <it>CCR5Δ32 </it>allele were assessed using PCR-RFLP and automatic sequencing analysis methods on white blood cell DNA. Genotype and allele frequencies were compared using the χ 2 test and the Fisher exact test. Haplotypes were compared by logistic regression analysis.</p> <p>Results</p> <p>The distribution of <it>TNF-α-238G>A, -308G>A </it>and <it>-863 C>A </it>genetic variants was non-significantly different in HIV-1-infected patients compared with uninfected individuals: <it>-238G>A</it>, p = 0.7 and p = 0.3; <it>-308G>A</it>, p = 0.05 and p = 0.07; <it>-863 C>A</it>, p = 0.7 and p = 0.4, for genotype and allele comparisons, respectively. Haplotype analyses, however, indicated that carriers of the haplotype H3 were significantly more common among uninfected subjects (p = 0.04). Among the infected patients, the distribution of the three <it>TNF-α </it>genetic variants assessed was non-significantly different between TP and LTNP: <it>-238G>A</it>, p = 0.35 and p = 0.7; <it>-308G>A</it>, p = 0.7 and p = 0.6: <it>-863 C>A</it>, p = 0.2 and p = 0.2, for genotype and allele comparisons, respectively. Haplotype analyses also indicated non-significant associations. Subanalyses in the LTNP subset indicated that the <it>TNF-α-238A </it>variant allele was significantly overrepresented in patients who spontaneously controlled plasma viremia compared with those who had a detectable plasma viral load (genotype comparisons, p = 0.02; allele comparisons, p = 0.03). The <it>CCR5Δ32 </it>distribution was non-significantly different in HIV-1-infected patients with respect to the uninfected population (p = 0.15 and p = 0.2 for genotype and allele comparisons, respectively) and in LTNP vs TP (p = 0.4 and p = 0.5 for genotype and allele comparisons, respectively).</p> <p>Conclusions</p> <p>In our cohort of Caucasian Spaniards, <it>TNF-α </it>genetic variants could be involved in the vulnerability to HIV-1 infection. <it>TNF-α </it>genetic variants were unrelated to disease progression in infected subjects. The <it>-238G>A </it>SNP may modulate the control of viremia in LTNP. Carriage of the <it>CCR5Δ32 </it>variant allele had no effect on the risk of infection and disease progression.</p

    Methyl donor deficient diets cause distinct alterations in lipid metabolism but are poorly representative of human NAFLD

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) is a global health issue. Dietary methyl donor restriction is used to induce a NAFLD/non-alcoholic steatohepatitis (NASH) phenotype in rodents, however the extent to which this model reflects human NAFLD remains incompletely understood. To address this, we undertook hepatic transcriptional profiling of methyl donor restricted rodents and compared these to published human NAFLD datasets.              Methods: Adult C57BL/6J mice were maintained on control, choline deficient (CDD) or methionine/choline deficient (MCDD) diets for four weeks; the effects on methyl donor and lipid biology were investigated by bioinformatic analysis of hepatic gene expression profiles followed by a cross-species comparison with human expression data of all stages of NAFLD. Results: Compared to controls, expression of the very low density lipoprotein (VLDL) packaging carboxylesterases (Ces1d, Ces1f, Ces3b) and the NAFLD risk allele Pnpla3 were suppressed in MCDD; with Pnpla3 and the liver predominant Ces isoform, Ces3b, also suppressed in CDD. With respect to 1-carbon metabolism, down-regulation of Chka, Chkb, Pcty1a, Gnmt and Ahcy with concurrent upregulation of Mat2a suggests a drive to maintain S-adenosylmethionine levels. There was minimal similarity between global gene expression patterns in either dietary intervention and any stage of human NAFLD, however some common transcriptomic changes in inflammatory, fibrotic and proliferative mediators were identified in MCDD, NASH and HCC. Conclusions: This study suggests suppression of VLDL assembly machinery may contribute to hepatic lipid accumulation in these models, but that CDD and MCDD rodent diets are minimally representative of human NAFLD at the transcriptional level

    Population Dynamics and Diversity of Viruses, Bacteria and Phytoplankton in a Shallow Eutrophic Lake

    Get PDF
    We have studied the temporal variation in viral abundances and community assemblage in the eutrophic Lake Loosdrecht through epifluorescence microscopy and pulsed field gel electrophoresis (PFGE). The virioplankton community was a dynamic component of the aquatic community, with abundances ranging between 5.5 × 107 and 1.3 × 108 virus-like particles ml−1 and viral genome sizes ranging between 30 and 200 kb. Both viral abundances and community composition followed a distinct seasonal cycle, with high viral abundances observed during spring and summer. Due to the selective and parasitic nature of viral infection, it was expected that viral and host community dynamics would covary both in abundances and community composition. The temporal dynamics of the bacterial and cyanobacterial communities, as potential viral hosts, were studied in addition to a range of environmental parameters to relate these to viral community dynamics. Cyanobacterial and bacterial communities were studied applying epifluorescence microscopy, flow cytometry, and denaturing gradient gel electrophoresis (DGGE). Both bacterial and cyanobacterial communities followed a clear seasonal cycle. Contrary to expectations, viral abundances were neither correlated to abundances of the most dominant plankton groups in Lake Loosdrecht, the bacteria and the filamentous cyanobacteria, nor could we detect a correlation between the assemblage of viral and bacterial or cyanobacterial communities during the overall period. Only during short periods of strong fluctuations in microbial communities could we detect viral community assemblages to covary with cyanobacterial and bacterial communities. Methods with a higher specificity and resolution are probably needed to detect the more subtle virus–host interactions. Viral abundances did however relate to cyanobacterial community assemblage and showed a significant positive correlation to Chl-a as well as prochlorophytes, suggesting that a significant proportion of the viruses in Lake Loosdrecht may be phytoplankton and more specific cyanobacterial viruses. Temporal changes in bacterial abundances were significantly related to viral community assemblage, and vice versa, suggesting an interaction between viral and bacterial communities in Lake Loosdrecht

    Anthropometric and glucometabolic changes in an aged mouse model of lipocalin-2 overexpression

    Get PDF
    Background:: Lipocalin-2 (LCN2) is widely expressed in the organism with pleiotropic roles. In particular, its overexpression correlates with tissue stress conditions including inflammation, metabolic disorders, chronic diseases and cancer. Objectives:: To assess the effects of systemic LCN2 overexpression on adipose tissue and glucose metabolism. Subjects:: Eighteen-month-old transgenic mice with systemic LCN2 overexpression (LCN2-Tg) and age/sex-matched wild-type mice. Methods:: Metabolic cages; histology and real-time PCR analysis; glucose and insulin tolerance tests; ELISA; flow cytometry; microPET and serum analysis. Results:: LCN2-Tg mice were smaller compared to controls but they ate (P = 0.0156) and drank (P = 0.0057) more and displayed a higher amount of visceral adipose tissue. Furthermore, LCN2-Tg mice with body weight 6520 g showed adipocytes with a higher cell area (P &lt; 0.0001) and altered expression of genes involved in adipocyte differentiation and inflammation. In particular, mRNA levels of adipocyte-derived Pparg (P 64 0.0001), Srebf1 (P &lt; 0.0001), Fabp4 (P = 0.056), Tnfa (P = 0.0391), Il6 (P = 0.0198), and Lep (P = 0.0003) were all increased. Furthermore, LCN2-Tg mice displayed a decreased amount of basal serum insulin (P = 0.0122) and a statistically significant impaired glucose tolerance and insulin sensitivity consistent with Slc2a2 mRNA (P 64 0.0001) downregulated expression. On the other hand, Insr mRNA (P 64 0.0001) was upregulated and correlated with microPET analysis that demonstrated a trend in reduced whole-body glucose consumption and MRGlu in the muscles and a significantly reduced MRGlu in brown adipose tissue (P = 0.0247). Nevertheless, an almost nine-fold acceleration of hexokinase activity was observed in the LCN2-Tg mice liver compared to controls (P = 0.0027). Moreover, AST and ALT were increased (P = 0.0421 and P = 0.0403, respectively), which indicated liver involvement also demonstrated by histological staining. Conclusions:: We show that LCN2 profoundly impacts adipose tissue size and function and glucose metabolism, suggesting that LCN2 should be considered as a risk factor in ageing for metabolic disorders leading to obesity

    Phylogenetic Diversity and Ecological Pattern of Ammonia-oxidizing Archaea in the Surface Sediments of the Western Pacific

    Get PDF
    The phylogenetic diversity of ammonia-oxidizing archaea (AOA) was surveyed in the surface sediments from the northern part of the South China Sea (SCS). The distribution pattern of AOA in the western Pacific was discussed through comparing the SCS with other areas in the western Pacific including Changjiang Estuary and the adjacent East China Sea where high input of anthropogenic nitrogen was evident, the tropical West Pacific Continental Margins close to the Philippines, the deep-sea methane seep sediments in the Okhotsk Sea, the cold deep sea of Northeastern Japan Sea, and the hydrothermal field in the Southern Okinawa Trough. These various environments provide a wide spectrum of physical and chemical conditions for a better understanding of the distribution pattern and diversities of AOA in the western Pacific. Under these different conditions, the distinct community composition between shallow and deep-sea sediments was clearly delineated based on the UniFrac PCoA and Jackknife Environmental Cluster analyses. Phylogenetic analyses showed that a few ammonia-oxidizing archaeal subclades in the marine water column/sediment clade and endemic lineages were indicative phylotypes for some environments. Higher phylogenetic diversity was observed in the Philippines while lower diversity in the hydrothermal vent habitat. Water depth and possibly with other environmental factors could be the main driving forces to shape the phylogenetic diversity of AOA observed, not only in the SCS but also in the whole western Pacific. The multivariate regression tree analysis also supported this observation consistently. Moreover, the functions of current and other climate factors were also discussed in comparison of phylogenetic diversity. The information collectively provides important insights into the ecophysiological requirements of uncultured ammonia-oxidizing archaeal lineages in the western Pacific Ocean
    • …
    corecore