142 research outputs found

    Self-reported losses versus actual losses in online gambling: an empirical study

    Get PDF
    Many research findings in the gambling studies field rely on self-report data. A very small body of empirical research also suggests that when using self-report, players report their gambling losses inaccurately. The aim of the present study was to evaluate the differences between objective and subjective gambling spent data by comparing gambler’s actual behavioral tracking data with their self-report data over a 1-month period. A total of 17,742 Norwegian online gamblers were asked to participate in an online survey. Of those surveyed, 1335 gamblers answered questions relating to gambling expenditure that could be compared with their actual gambling behavior. The study found that the estimated loss self-reported by gamblers was correlated with the actual objective loss and that players with higher losses tended to have more difficulty estimating their gambling expenditure (i.e., players who spent more money gambling also appeared to have more trouble estimating their expenses accurately). Overall, the findings demonstrate that caution is warranted when using self-report data relating to amount of money spent gambling in any studies that are totally reliant on self-report data

    Second-Generation Drosophila Chemical Tags: Sensitivity, Versatility, and Speed

    Get PDF
    Labeling and visualizing cells and subcellular structures within thick tissues, whole organs and even intact animals is key to studying biological processes. This is particularly true for studies of neural circuits where neurons form submicron synapses but have arbors that may span millimeters in length. Traditionally, labeling is achieved by immunofluorescence; however diffusion of antibody molecules (>100 kDa) is slow and often results in uneven labeling with very poor penetration into the centre of thick specimens; these limitations can be partially addressed by extending staining protocols to over a week (Drosophila brain) and months (mice). Recently we developed an alternative approach using genetically encoded chemical tags CLIP, SNAP, Halo and TMP for tissue labeling; this resulted in >100 fold increase in labeling speed in both mice and Drosophila, at the expense of a considerable drop in absolute sensitivity when compared to optimized immunofluorescence staining. We now present a second generation of UAS and LexA responsive CLIPf, SNAPf and Halo chemical labeling reagents for flies. These multimerized tags, with translational enhancers, display up to 64 fold increase in sensitivity over first generation reagents. In addition we developed a suite of conditional reporters (4xSNAPf tag and CLIPf-SNAPf-Halo2) that are activated by the DNA recombinase Bxb1. Our new reporters can be used with weak and strong GAL4 and LexA drivers and enable stochastic, intersectional and multicolor Brainbow labeling. These improvements in sensitivity and experimental versatility, while still retaining the substantial speed advantage that is a signature of chemical labeling, should significantly increase the scope of this technology.This work was supported by the Medical Research Council (MRC file reference U105188491 and U105178788), European Research Council Starting Investigator (211089) and Consolidator grants (649111) to G.S.X.E.J., and a Royal Society Dorothy Hodgkin Fellowship to S.C. T.O.A. is supported by a Human Frontier Science Program Long Term Fellowship. Research in R.B.’s laboratory is supported by the University of Lausanne and an ERC Consolidator grant (615094). Stocks obtained from the Bloomington Drosophila Stock Center (NIH P40OD018537) were used in this study

    New zebrafish models of neurodegeneration

    Get PDF
    In modern biomedicine, the increasing need to develop experimental models to further our understanding of disease conditions and delineate innovative treatments has found in the zebrafish (Danio rerio) an experimental model, and indeed a valuable asset, to close the gap between in vitro and in vivo assays. Translation of ideas at a faster pace is vital in the field of neurodegeneration, with the attempt to slow or prevent the dramatic impact on the society's welfare being an essential priority. Our research group has pioneered the use of zebrafish to contribute to the quest for faster and improved understanding and treatment of neurodegeneration in concert with, and inspired by, many others who have primed the study of the zebrafish to understand and search for a cure for disorders of the nervous system. Aware of the many advantages this vertebrate model holds, here, we present an update on the recent zebrafish models available to study neurodegeneration with the goal of stimulating further interest and increasing the number of diseases and applications for which they can be exploited. We shall do so by citing and commenting on recent breakthroughs made possible via zebrafish, highlighting their benefits for the testing of therapeutics and dissecting of disease mechanisms

    Revisiting in vivo staining with alizarin red S - a valuable approach to analyse zebrafish skeletal mineralization during development and regeneration

    Get PDF
    Background The correct evaluation of mineralization is fundamental for the study of skeletal development, maintenance, and regeneration. Current methods to visualize mineralized tissue in zebrafish rely on: 1) fixed specimens; 2) radiographic and ΌCT techniques, that are ultimately limited in resolution; or 3) vital stains with fluorochromes that are indistinguishable from the signal of green fluorescent protein (GFP)-labelled cells. Alizarin compounds, either in the form of alizarin red S (ARS) or alizarin complexone (ALC), have long been used to stain the mineralized skeleton in fixed specimens from all vertebrate groups. Recent works have used ARS vital staining in zebrafish and medaka, yet not based on consistent protocols. There is a fundamental concern on whether ARS vital staining, achieved by adding ARS to the water, can affect bone formation in juvenile and adult zebrafish, as ARS has been shown to inhibit skeletal growth and mineralization in mammals. Results Here we present a protocol for vital staining of mineralized structures in zebrafish with a low ARS concentration that does not affect bone mineralization, even after repetitive ARS staining events, as confirmed by careful imaging under fluorescent light. Early and late stages of bone development are equally unaffected by this vital staining protocol. From all tested concentrations, 0.01 % ARS yielded correct detection of bone calcium deposits without inducing additional stress to fish. Conclusions The proposed ARS vital staining protocol can be combined with GFP fluorescence associated with skeletal tissues and thus represents a powerful tool for in vivo monitoring of mineralized structures. We provide examples from wild type and transgenic GFP-expressing zebrafish, for endoskeletal development and dermal fin ray regeneration

    Frequent reduced expression of alpha-1B-adrenergic receptor caused by aberrant promoter methylation in gastric cancers

    Get PDF
    Recent studies have suggested that epigenetic inactivation of tumour-related genes by promoter methylation participates in the development of gastric cancer. We newly identified the frequently aberrant promoter methylation of alpha-1B-adrenergic receptor (ADRA1B) in colorectal cancer by methylation-sensitive representational difference analysis (MS-RDA) and examined the methylation status of the ADRA1B promoter in 34 paired samples of colorectal cancer and surrounding epithelial tissue, and 34 paired samples of gastric cancer and surrounding epithelial tissue. In colorectal cancers, only four of 34 (11.8%) tumours showed ADRA1B promoter methylation. In contrast, ADRA1B promoter methylation was detected in 24 of 34 (70.6%) gastric cancers and in 14 of 34 (41.2%) surrounding epithelial tissues. The frequency of ADRA1B promoter methylation was higher in gastric epithelial tissues with intestinal metaplasia (41.6%) than in those without intestinal metaplasia (25.0%). Reverse transcription–PCR detected reduced ADRA1B expression in 12 of 18 (66.7%) gastric cancers, and its promoter methylation was detected in 11 of these 12 (91.7%) gastric cancers with reduced ADRA1B expression. Thus, ADRA1B promoter is frequently methylated in gastric cancer. Our results suggest that the ADRA1B gene is an important tumour-related gene frequently involved in the development and progression of gastric cancer

    Effect of garlic on blood pressure: A systematic review and meta-analysis

    Get PDF
    The electronic version of this article is the complete one and can be found online at the publisher's website.Background: Non-pharmacological treatment options for hypertension have the potential to reduce the risk of cardiovascular disease at a population level. Animal studies have suggested that garlic reduces blood pressure, but primary studies in humans and non-systematic reviews have reported mixed results. With interest in complementary medicine for hypertension increasing, it is timely to update a systematic review and meta-analysis from 1994 of studies investigating the effect of garlic preparations on blood pressure. Methods: We searched the Medline and Embase databases for studies published between 1955 and October 2007. Randomised controlled trials with true placebo groups, using garlic-only preparations, and reporting mean systolic and/or diastolic blood pressure (SBP/DBP) and standard deviations were included in the meta-analysis. We also conducted subgroup meta-analysis by baseline blood pressure (hypertensive/normotensive), for the first time. Meta-regression analysis was performed to test the associations between blood pressure outcomes and duration of treatment, dosage, and blood pressure at start of treatment. Results: Eleven of 25 studies included in the systematic review were suitable for meta-analysis. Meta-analysis of all studies showed a mean decrease of 4.6 ± 2.8 mm Hg for SBP in the garlic group compared to placebo (n = 10; p = 0.001), while the mean decrease in the hypertensive subgroup was 8.4 ± 2.8 mm Hg for SBP (n = 4; p < 0.001), and 7.3 ± 1.5 mm Hg for DBP (n = 3; p < 0.001). Regression analysis revealed a significant association between blood pressure at the start of the intervention and the level of blood pressure reduction (SBP: R = 0.057; p = 0.03; DBP: R = -0.315; p = 0.02). Conclusion: Our meta-analysis suggests that garlic preparations are superior to placebo in reducing blood pressure in individuals with hypertension.Karin Ried, Oliver R. Frank, Nigel P. Stocks, Peter Fakler and Thomas Sulliva

    Multiple network properties overcome random connectivity to enable stereotypic sensory responses

    Get PDF
    Connections between neuronal populations may be genetically hardwired or random. In the insect olfactory system, projection neurons of the antennal lobe connect randomly to Kenyon cells of the mushroom body. Consequently, while the odor responses of the projection neurons are stereotyped across individuals, the responses of the Kenyon cells are variable. Surprisingly, downstream of Kenyon cells, mushroom body output neurons show stereotypy in their responses. We found that the stereotypy is enabled by the convergence of inputs from many Kenyon cells onto an output neuron, and does not require learning. The stereotypy emerges in the total response of the Kenyon cell population using multiple odor-specific features of the projection neuron responses, benefits from the nonlinearity in the transfer function, depends on the convergence:randomness ratio, and is constrained by sparseness. Together, our results reveal the fundamental mechanisms and constraints with which convergence enables stereotypy in sensory responses despite random connectivity

    Hypoglycemia Revisited in the Acute Care Setting

    Get PDF
    Hypoglycemia is a common finding in both daily clinical practice and acute care settings. The causes of severe hypoglycemia (SH) are multi-factorial and the major etiologies are iatrogenic, infectious diseases with sepsis and tumor or autoimmune diseases. With the advent of aggressive lowering of HbA1c values to achieve optimal glycemic control, patients are at increased risk of hypoglycemic episodes. Iatrogenic hypoglycemia can cause recurrent morbidity, sometime irreversible neurologic complications and even death, and further preclude maintenance of euglycemia over a lifetime of diabetes. Recent studies have shown that hypoglycemia is associated with adverse outcomes in many acute illnesses. In addition, hypoglycemia is associated with increased mortality among elderly and non-diabetic hospitalized patients. Clinicians should have high clinical suspicion of subtle symptoms of hypoglycemia and provide prompt treatment. Clinicians should know that hypoglycemia is associated with considerable adverse outcomes in many acute critical illnesses. In order to reduce hypoglycemia-associated morbidity and mortality, timely health education programs and close monitoring should be applied to those diabetic patients presenting to the Emergency Department with SH. ED disposition strategies should be further validated and justified to achieve balance between the benefits of euglycemia and the risks of SH. We discuss relevant issues regarding hypoglycemia in emergency and critical care settings

    MicroRNA degradation by a conserved target RNA regulates animal behavior

    Get PDF
    International audiencemicroRNAs (miRNAs) repress target transcripts through partial complementarity. By contrast, highly complementary miRNA-binding sites within viral and artificially engineered transcripts induce miRNA degradation in vitro and in cell lines. Here, we show that a genome-encoded transcript harboring a near-perfect and deeply conserved miRNA-binding site for miR-29 controls zebrafish and mouse behavior. This transcript originated in basal vertebrates as a long noncoding RNA (lncRNA) and evolved to the protein-coding gene NREP in mammals, where the miR-29-binding site is located within the 3â€Č UTR. We show that the near-perfect miRNA site selectively triggers miR-29b destabilization through 3â€Č trimming and restricts its spatial expression in the cerebellum. Genetic disruption of the miR-29 site within mouse Nrep results in ectopic expression of cerebellar miR-29b and impaired coordination and motor learning. Thus, we demonstrate an endogenous target-RNA-directed miRNA degradation event and its requirement for animal behavio

    Zebrafish as a model for kidney function and disease

    Get PDF
    Kidney disease is a global problem with around three million people diagnosed in the UK alone and the incidence is rising. Research is critical to develop better treatments. Animal models can help to better understand the pathophysiology behind the various kidney diseases and to screen for therapeutic compounds, but the use especially of mammalian models should be minimised in the interest of animal welfare. Zebrafish are increasingly used, as they are genetically tractable and have a basic renal anatomy comparable to mammalian kidneys with glomerular filtration and tubular filtration processing. Here, we discuss how zebrafish have advanced the study of nephrology and the mechanisms underlying kidney disease
    • 

    corecore