9 research outputs found
Biological Interactions and Dynamics Science Theme Advisory Panel (BID-STAP)
This report contains the charge to the panel, the panel's discussions and panel recommendations
Comparative Bacterial Proteomics: Analysis of the Core Genome Concept
While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits
Electrospray ionization-fourier transform ion cyclotron mass spectrometry using ion preselection and external accumulation for ultrahigh sensitivity
AbstractThe dynamic range of Fourier transform ion cyclotron mass spectrometry (FTICR) is typically limited by the useful charge capacity of an FTICR cell (to ∼106 to 107 elementary charges) and the minimum number of ions required to produce a useful signal (∼102 elementary charges). We show that the expansion of the dynamic range by 2 orders of magnitude can be achieved by preselecting lower abundance species in a quadrupole interface to an electrospray ionization (ESI) source. Ion preselection is then followed by ion accumulation in external to the FTICR cell a linear (2-D) quadrupole trap and subsequent transfer to the region of high magnetic field for gated trapping in the FTICR cell. Two modes of ion preselection, using either the quadrupole filtering mode or rf-only dipolar excitation, were studied and mass resolutions of 30 to 100 were achieved for selective external ion accumulation of peptides and proteins with molecular weights ranging from 500 to 17,000 Da. The ability to selectively eject the most abundant species before trapping in the FTICR has enormous practical benefits for increasing the sensitivity and dynamic range of measurements
Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry
Blood serum is a complex body fluid that contains various proteins ranging in concentration over at least 9 orders of magnitude. Using a combination of mass spectrometry technologies with improvements in sample preparation, we have performed a proteomic analysis with submilliliter quantities of serum and increased the measurable concentration range for proteins in blood serum beyond previous reports. We have detected 490 proteins in serum by on-line reversed-phase microcapillary liquid chromatography coupled with ion trap mass spectrometry. To perform this analysis, immunoglobulins were removed from serum using protein A/G, and the remaining proteins were digested with trypsin. Resulting peptides were separated by strong cation exchange chromatography into distinct fractions prior to analysis. This separation resulted in
Identification of Proteins in Human Cytomegalovirus (HCMV) Particles: the HCMV Proteome
Human cytomegalovirus (HCMV), a member of the herpesvirus family, is a large complex enveloped virus composed of both viral and cellular gene products. While the sequence of the HCMV genome has been known for over a decade, the full set of viral and cellular proteins that compose the HCMV virion are unknown. To approach this problem we have utilized gel-free two-dimensional capillary liquid chromatography-tandem mass spectrometry (MS/MS) and Fourier transform ion cyclotron resonance MS to identify and determine the relative abundances of viral and cellular proteins in purified HCMV AD169 virions and dense bodies. Analysis of the proteins from purified HCMV virion preparations has indicated that the particle contains significantly more viral proteins than previously known. In this study, we identified 71 HCMV-encoded proteins that included 12 proteins encoded by known viral open reading frames (ORFs) previously not associated with virions and 12 proteins from novel viral ORFs. Analysis of the relative abundance of HCMV proteins indicated that the predominant virion protein was the pp65 tegument protein and that gM rather than gB was the most abundant glycoprotein. We have also identified over 70 host cellular proteins in HCMV virions, which include cellular structural proteins, enzymes, and chaperones. In addition, analysis of HCMV dense bodies indicated that these viral particles are composed of 29 viral proteins with a reduced quantity of cellular proteins in comparison to HCMV virions. This study provides the first comprehensive quantitative analysis of the viral and cellular proteins that compose infectious particles of a large complex virus
Recommended from our members
Biological Interactions and Dynamics Science Theme Advisory Panel (BID-STAP)
This report contains the charge to the panel, the panel's discussions and panel recommendations