22 research outputs found

    Alirocumab and cardiovascular outcomes after acute coronary syndrome

    No full text
    BACKGROUN

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    No full text

    Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome

    No full text
    BACKGROUN

    Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome

    No full text
    BACKGROUND Lipoprotein(a) concentration is associated with cardiovascular events. Alirocumab, a proprotein convertase subtilisin/kexin type 9 inhibitor, lowers lipoprotein(a) and low-density lipoprotein cholesterol (LDL-C).OBJECTIVES A pre-specified analysis of the placebo-controlled ODYSSEY Outcomes trial in patients with recent acute coronary syndrome (ACS) determined whether alirocumab-induced changes in lipoprotein(a) and LDL-C independently predicted major adverse cardiovascular events (MACE).METHODS One to 12 months after ACS, 18,924 patients on high-intensity statin therapy were randomized to alirocumab or placebo and followed for 2.8 years (median). Lipoprotein(a) was measured at randomization and 4 and 12 months thereafter. The primary MACE outcome was coronary heart disease death, nonfatal myocardial infarction, ischemic stroke, or hospitalization for unstable angina.RESULTS Baseline lipoprotein(a) levels (median: 21.2 mg/dl; interquartile range [IQR]: 6.7 to 59.6 mg/dl) and LDL-C [corrected for cholesterol content in lipoprotein(a)] predicted MACE. Alirocumab reduced lipoprotein(a) by 5.0 mg/dl (IQR: 0 to 13.5 mg/dl), corrected LDL-C by 51.1 mg/dl (IQR: 33.7 to 67.2 mg/dl), and reduced the risk of MACE (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.78 to 0.93). Alirocumab-induced reductions of lipoprotein(a) and corrected LDL-C independently predicted lower risk of MACE, after adjustment for baseline concentrations of both lipoproteins and demographic and clinical characteristics. A 1-mg/dl reduction in lipoprotein(a) with alirocumab was associated with a HR of 0.994 (95% CI: 0.990 to 0.999; p = 0.0081).CONCLUSIONS Baseline lipoprotein(a) and corrected LDL-C levels and their reductions by alirocumab predicted the risk of MACE after recent ACS. Lipoprotein(a) lowering by alirocumab is an independent contributor to MACE reduction, which suggests that lipoprotein(a) should be an independent treatment target after ACS. (ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; NCT01663402) (C) 2020 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.Fondation Assistance Publique - Hopitaux de Paris, Paris, Franc

    Lipoprotein(a) and Benefit of PCSK9 Inhibition in Patients With Nominally Controlled LDL Cholesterol

    No full text

    Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome

    No full text

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    No full text

    Effects of Alirocumab on Cardiovascular Events After Coronary Bypass Surgery

    No full text
    BACKGROUND Patients with acute coronary syndrome (ACS) and history of coronary artery bypass grafting (CABG) are at high risk for recurrent cardiovascular events and death.OBJECTIVES This study sought to determine the clinical benefit of adding alirocumab to statins in ACS patients with prior CABG in a pre-specified analysis of ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab).METHODS Patients (n = 18,924) 1 to 12 months post-ACS with elevated atherogenic lipoprotein levels despite high-intensity statin therapy were randomized to alirocumab or placebo subcutaneously every 2 weeks. Median follow-up was 2.8 years. The primary composite endpoint of major adverse cardiovascular events (MACE) comprised coronary heart disease death, nonfatal myocardial infarction, ischemic stroke, or unstable angina requiring hospitalization. All-cause death was a secondary endpoint. Patients were categorized by CABG status: no CABG (n = 16,896); index CABG after qualifying ACS, but before randomization (n = 1,025); or CABG before the qualifying ACS (n = 1,003).RESULTS In each CABG category, hazard ratios (95% confidence intervals) for MACE (no CABG 0.86 [0.78 to 0.95], index CABG 0.85 [0.54 to 1.35], prior CABG 0.77 [0.61 to 0.98]) and death (0.88 [ 0.75 to 1.03], 0.85 [0.46 to 1.59], 0.67 [0.44 to 1.01], respectively) were consistent with the overall trial results (0.85 [ 0.78 to 0.93] and 0.85 [0.73 to 0.98], respectively). Absolute risk reductions (95% confidence intervals) differed across CABG categories for MACE (no CABG 1.3% [0.5% to 2.2%], index CABG 0.9% [-2.3% to 4.0%], prior CABG 6.4% [0.9% to 12.0%]) and for death (0.4% [-0.1% to 1.0%], 0.5% [-1.9% to 2.9%], and 3.6% [0.0% to 7.2%]).CONCLUSIONS Among patients with recent ACS and elevated atherogenic lipoproteins despite intensive statin therapy, alirocumab was associated with large absolute reductions in MACE and death in those with CABG preceding the ACS event. (ODYSSEY OUTCOMES: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; NCT01663402) (C) 2019 by the American College of Cardiology Foundation.Fondation Assistance Publique-Hopitaux de Paris, Paris, Franc

    Apolipoprotein B, Residual Cardiovascular Risk After Acute Coronary Syndrome, and Effects of Alirocumab.

    No full text
    Background: Apolipoprotein B (apoB) provides an integrated measure of atherogenic risk. Whether apoB levels and apoB lowering hold incremental predictive information on residual risk after acute coronary syndrome beyond that provided by low-density lipoprotein cholesterol is uncertain. Methods: The ODYSSEY OUTCOMES trial (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) compared the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome and elevated atherogenic lipoproteins despite optimized statin therapy. Primary outcome was major adverse cardiovascular events (MACE; coronary heart disease death, nonfatal myocardial infarction, fatal/nonfatal ischemic stroke, hospitalization for unstable angina). Associations between baseline apoB or apoB at 4 months and MACE were assessed in adjusted Cox proportional hazards and propensity score–matched models. Results: Median follow-up was 2.8 years. In proportional hazards analysis in the placebo group, MACE incidence increased across increasing baseline apoB strata (3.2 [95% CI, 2.9–3.6], 4.0 [95% CI, 3.6–4.5], and 5.5 [95% CI, 5.0–6.1] events per 100 patient-years in strata 35–<50, and ≤35 mg/dL, respectively). Compared with propensity score–matched patients from the placebo group, treatment hazard ratios for alirocumab also decreased monotonically across achieved apoB strata. Achieved apoB was predictive of MACE after adjustment for achieved low-density lipoprotein cholesterol or non–high-density lipoprotein cholesterol but not vice versa. Conclusions: In patients with recent acute coronary syndrome and elevated atherogenic lipoproteins, MACE increased across baseline apoB strata. Alirocumab reduced MACE across all strata of baseline apoB, with larger absolute reductions in patients with higher baseline levels. Lower achieved apoB was associated with lower risk of MACE, even after accounting for achieved low-density lipoprotein cholesterol or non–high-density lipoprotein cholesterol, indicating that apoB provides incremental information. Achievement of apoB levels as low as ≤35 mg/dL may reduce lipoprotein-attributable residual risk after acute coronary syndrome. Registration: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT01663402.gov; Unique identifier: NCT01663402.URL: https://www
    corecore