45 research outputs found

    Electrochemical properties of magnetite nanoparticles supported on carbon paste electrode in various electrolyte solutions: a study by cyclic voltammetry

    Get PDF
    Electrochemical properties of magnetite nanoparticles supported on carbon paste electrodes were investigated by means of cyclic voltammetry. The measurements were performed for bare and coated with citrate magnetite nanoparticles in aqueous solutions of various electrolytes: NaCl, NaClO4, and Na2HPO4. Cyclic voltammetry curves obtained on bare and citrate functionalized Fe3O4 nanoparticles are rather similar indicating that the electrochemical properties of the magnetite nanoparticles are not significantly affected by the citrate coating. Cyclic voltammetry scans reveal the formation of metallic iron below −1.2 V. The defective structure of the oxide phases formed by oxidation of metallic iron seems to play an important role in the chemisorption of chloride ions and their subsequent oxidation. Graphical Abstract: (Figure presented.). © The Author(s) 2024

    Uptake of Magnetite Nanoparticles on Polydopamine Films Deposited on Gold Surfaces: A Study by AFM and XPS

    Get PDF
    Polydopamine has the capacity to adhere to a large variety of materials and this property offers the possibility to bind nanoparticles to solid surfaces. In this work, magnetite nanoparticles were deposited on gold substrates coated with polydopamine films. The aim of this work was to investigate the effects of the composition and morphology of the PDA layers on the sticking of magnetite nanoparticles. The polydopamine coating of gold surfaces was achieved by the oxidation of alkaline solutions of dopamine with various reaction times. The length of the reaction time to form PDA was expected to influence the composition and surface roughness of the PDA films. Magnetite nanoparticles were deposited on these polydopamine films by immersing the samples in aqueous dispersions of nanoparticles. The morphology at the nanometric scale and the composition of the surfaces before and after the deposition of magnetite nanoparticles were investigated by means of AFM and XPS. We found that the amount of magnetite nanoparticles on the surface did not vary monotonically with the reaction time of PDA formation, but it was at the minimum after 20 min of reaction. This behavior may be attributed to changes in the chemical composition of the coating layer with reaction time

    Chemical Composition and Micro Morphology of Golden Laminae in the Wall Painting “La Maestà” by Simone Martini: A Study by Optical Microscopy, XRD, FESEM-EDS and ToF-SIMS

    No full text
    The chemical characterization of gilding decorations in works of art is fundamental in order to elucidate the techniques and materials used by the artists. In the present work we investigated by a combination of bulk and surface sensitive methods the composition and micro stratigraphy of the gilding laminae in the wall painting of the 14th century “La Maestà”, the masterpiece of Simone Martini. The aim of this study was to determine the composition of the gilding leaves and of the adhesive organic materials used to glue the metallic decorations to the wall painting. Due to the altered state of the samples we could not univocally identify the nature of the adhesive materials. Time of flight secondary ion mass spectrometry measurements showed that the gilding layers consisted of a gold leaf which was laid either directly on a preparation layer or on a tin lamina. The high sensitivity of ToF-SIMS and its spatial resolution allowed us to find traces of silver in the gold leaves and in the tin laminae which were not revealed by energy dispersive X-ray analysis

    Effect of Citrate on the Size and the Magnetic Properties of Primary Fe3O4 Nanoparticles and Their Aggregates

    No full text
    The size, size distribution and magnetic properties of magnetite nanoparticles (NPs) prepared by co-precipitation without citrate, in the presence of citrate and citrate adsorbed post-synthesis were studied by X-ray Diffraction (XRD), Dynamic Light Scattering (DLS), Electron Paramagnetic Resonance (EPR) and magnetization measurements. The aim of this investigation was to clarify the effect of citrate ions on the size and magnetic properties of magnetite NPs. The size of the primary NPs, as determined by analysing the width of diffraction peaks using various methods, was ca. 10 nm for bare magnetite NPs and with citrate adsorbed post-synthesis, whereas it was around 5 nm for the NPs co-precipitated in the presence of citrate. DLS measurements show that the three types of NPs form aggregates (100–200 nm in diameter) but the dispersions of the citrate-coated NPs are more stable against sedimentation than those of bare NPs. The sizes and size distributions determined by XRD are in good agreement with those of the magnetic domains obtained by fitting of the magnetization vs. magnetic field intensity curves. Magnetization vs. magnetic field intensity curves show that the three kinds of sample are superparamagnetic

    Effects of epitaxial films of nanometric thickness on the X-ray photoelectron diffraction intensities from substrates

    No full text
    The effects on the X-ray photoelectron diffraction intensities from the substrate produced by epitaxial NiO(0 0 1) films of various thickness deposited on Ag(0 0 1) were investigated. The variations in the Ag XPD curves induced by the NiO films can be explained in terms of multiple scattering of the electrons emitted by the substrate atoms along the close-packed rows of the overlayer. Intensity minima in the XPD curves from the substrate in correspondence to intensity maxima in the XPD curves from the overlayer are observed when the thin film is commensurate with the substrate. For films of suitable thickness, the analysis of XPD curves from the substrate allows one to get information about the structure of the film and of the film–substrate interface

    Surface Morphology at the Microscopic Scale, Swelling/Deswelling, and the Magnetic Properties of PNIPAM/CMC and PNIPAM/CMC/Fe3O4 Hydrogels

    No full text
    Poly(N-isopropylacrylamide) (PNIPAM) hydrogels containing carboxymethylcellulose (CMC) and CMC/Fe3O4 nanoparticles were prepared. Free-radical polymerization with BIS as cross-linker was used to synthesize the hydrogels. The morphology at the microscopic scale of these materials was investigated using field emission scanning electron microscopy (FESEM). The images show that CMC in the PNIPAM hydrogels induces the formation of a honeycomb structure. This surface morphology was not observed for pure PNIPAM hydrogels prepared under similar conditions. The equilibrium swelling degree of the PNIPAM/CMC hydrogels (5200%) is much larger than that of the pure PNIPAM hydrogels (2500%). The water retention of PNIPAM/CMC hydrogels above the volume phase transition temperature is strongly reduced compared to that of pure PNIPAM hydrogel. Both PNIPAM/Fe3O4 and PNIPAM/CMC/Fe3O4 hydrogels exhibit a superparamagnetic behavior, but the blocking temperature (104 K) of the former is higher than that of the latter (83 K)

    ToF-SIMS and XPS study of ancient papers

    No full text
    3noreservedThe surface composition of 18th century papers was investigated by means of ToF-SIMS and XPS. The aim of the present study was to explore the possibility of using these surface sensitive methods to obtain information which can help to determine the manufacturing process, provenance and state of conservation of ancient papers. The ToF-SIMS results indicate that the analyzed papers were sized by gelatin and that alum was added as hardening agent. The paper sheets produced in near geographical areas but in different paper mills exhibit a similar surface composition and morphology of the fibers as shown by the ToF-SIMS measurements. The ToF-SIMS and the XPS results indicate that a significant fraction of the cellulose fibers is not covered by the gelatin layer. This was observed for the ancient papers and for a modern handmade paper manufactured according to the old recipes. (C) 2010 Elsevier B.V. All rights reserved.mixedBENETTI, F.; MARCHETTINI, N.; ATREI, A.Benetti, F.; Marchettini, N.; Atrei, A

    The immobilization of titania nanoparticles on hyaluronan films and their photocatalytic properties

    No full text
    We have developed a method to bind titania nanoparticles onto hyaluronic films (HA) photoimmobilized on silanized glass. Titania nanoparticles were deposited on the HA films from commercially available dispersions by casting and dip-coating methods at various pHvalues. XPS was used to monitor the deposition of titania and to estimate the surface coverage of the nanoparticles. The topography of the titania-modified HA films was investigated by means of AFM. XPS results indicate that the titania surface coverage depends on the preparation method and the pH of the dispersion. We found that the maximum titania nanoparticle surface coverage was obtained by the casting method with the formation of aggregates and multilayers of particles. The titania surface coverage for the surfaces prepared by the dip-coating method is pH-dependent. The surfaces prepared at pH 2 show a surface coverage of 65% and a rather uniform distribution of particles. We found that titania nanoparticles are anchored in a stable way to the HA substrate in a phosphate buffer solution (PBS) and that the interaction between the HA and the titania is through the carbonyl group of carboxylates and amidic groups of the polymer. AFM images clearly show that titania nanoparticles are uniformly distributed over the HA films. By measuring the average diameter and the average height of the nanoparticles deposited on HA films it appears that the particles are partially embedded in the polysaccharide films. The results of the study on the photobleaching of methylene blue indicate that the characteristic photocatalytic activity of titania is maintained when the nanoparticles are anchored to the HA substrate
    corecore