58 research outputs found

    Dynamics of myelin content decrease in the rat stroke model

    Get PDF
    The majority of studies were usually focused on neuronal death after brain ischemia; however, stroke affects all cell types including oligodendrocytes that form myelin sheath in the CNS. Our study is focused on the changes of myelin content in the ischemic core and neighbor structures in early terms (1, 3 and 10 days) after stroke. Stroke was modeled with middle cerebral artery occlusion (MCAo) in 15 male rats that were divided into three groups by time points after operation. Brain sections were histologically stained with Luxol Fast Blue (LFB) for myelin quantification. The significant demyelination was found in the ischemic core, corpus callosum, anterior commissure, whereas myelin content was increased in caudoputamen, internal capsule and piriform cortex compared with the contralateral hemisphere. The motor cortex showed a significant increase of myelin content on the 1st day and a significant decrease on the 3rd and 10th days after MCAo. These results suggest that stroke influences myelination not only in the ischemic core but also in distant structures

    c-Jun N-terminal kinases (JNKs) in myocardial and cerebral ischemia/reperfusion injury

    Get PDF
    © 2018 Shvedova, Anfinogenova, Atochina-Vasserman, Schepetkin and Atochin. In this article, we review the literature regarding the role of c-Jun N-terminal kinases (JNKs) in cerebral and myocardial ischemia/reperfusion injury. Numerous studies demonstrate that JNK-mediated signaling pathways play an essential role in cerebral and myocardial ischemia/reperfusion injury. JNK-associated mechanisms are involved in preconditioning and post-conditioning of the heart and the brain. The literature and our own studies suggest that JNK inhibitors may exert cardioprotective and neuroprotective properties. The effects of modulating the JNK-depending pathways in the brain and the heart are reviewed. Cardioprotective and neuroprotective mechanisms of JNK inhibitors are discussed in detail including synthetic small molecule inhibitors (AS601245, SP600125, IQ-1S, and SR-3306), ion channel inhibitor GsMTx4, JNK-interacting proteins, inhibitors of mixed-lineage kinase (MLK) and MLK-interacting proteins, inhibitors of glutamate receptors, nitric oxide (NO) donors, and anesthetics. The role of JNKs in ischemia/reperfusion injury of the heart in diabetes mellitus is discussed in the context of comorbidities. According to reviewed literature, JNKs represent promising therapeutic targets for protection of the brain and the heart against ischemic stroke and myocardial infarction, respectively. However, different members of the JNK family exert diverse physiological properties which may not allow for systemic administration of non-specific JNK inhibitors for therapeutic purposes. Currently available candidate JNK inhibitors with high therapeutic potential are identified. The further search for selective JNK3 inhibitors remains an important task

    Cell-Based Drug Delivery and Use of Nano-and Microcarriers for Cell Functionalization

    Get PDF
    © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Cell functionalization with recently developed various nano- and microcarriers for therapeutics has significantly expanded the application of cell therapy and targeted drug delivery for the effective treatment of a number of diseases. The aim of this progress report is to review the most recent advances in cell-based drug vehicles designed as biological transporter platforms for the targeted delivery of different drugs. For the design of cell-based drug vehicles, different pathways of cell functionalization, such as covalent and noncovalent surface modifications, internalization of carriers are considered in greater detail together with approaches for cell visualization in vivo. In addition, several animal models for the study of cell-assisted drug delivery are discussed. Finally, possible future developments and applications of cell-assisted drug vehicles toward targeted transport of drugs to a designated location with no or minimal immune response and toxicity are addressed in light of new pathways in the field of nanomedicine

    Phosphomimetic Modulation of eNOS Improves Myocardial Reperfusion and Mimics Cardiac Postconditioning in Mice

    Get PDF
    Objective: Myocardial infarction resulting from ischemia-reperfusion injury can be reduced by cardiac postconditioning, in which blood flow is restored intermittently prior to full reperfusion. Although key molecular mechanisms and prosurvival pathways involved in postconditioning have been identified, a direct role for eNOS-derived NO in improving regional myocardial perfusion has not been shown. The objective of this study is to measure, with high temporal and spatial resolution, regional myocardial perfusion during ischemia-reperfusion and postconditioning, in order to determine the contribution of regional blood flow effects of NO to infarct size and protection. Methods and Results: We used myocardial contrast echocardiography to measure regional myocardial blood flow in mice over time. Reperfusion after myocardial ischemia-reperfusion injury is improved by postconditioning, as well as by phosphomimetic eNOS modulation. Knock-in mice expressing a phosphomimetic S1176D form of eNOS showed improved myocardial reperfusion and significantly reduced infarct size. eNOS knock-out mice failed to show cardioprotection from postconditioning. The size of the no-reflow zone following ischemia-reperfusion is substantially reduced by postconditioning and by the phosphomimetic eNOS mutation. Conclusions and Significance: Using myocardial contrast echocardiography, we show that temporal dynamics of regional myocardial perfusion restoration contribute to reduced infarct size after postconditioning. eNOS has direct effects on myocardial blood flow following ischemia-reperfusion, with reduction in the size of the no-reflow zone. These results have important implications for ongoing clinical trials on cardioprotection, because the degree of protective benefit may be significantly influenced by the regional hemodynamic effects of eNOS-derived NO.American Heart Association (Predoctoral Fellowship)National Institutes of Health (U.S.) (R01 NS33335)National Institutes of Health (U.S.) (R01 HL57818

    Topical Insulin Accelerates Wound Healing in Diabetes by Enhancing the AKT and ERK Pathways: A Double-Blind Placebo-Controlled Clinical Trial

    Get PDF
    Background: Wound healing is impaired in diabetes mellitus, but the mechanisms involved in this process are virtually unknown. Proteins belonging to the insulin signaling pathway respond to insulin in the skin of rats. Objective: The purpose of this study was to investigate the regulation of the insulin signaling pathway in wound healing and skin repair of normal and diabetic rats, and, in parallel, the effect of a topical insulin cream on wound healing and on the activation of this pathway. Research Design and Methods: We investigated insulin signaling by immunoblotting during wound healing of control and diabetic animals with or without topical insulin. Diabetic patients with ulcers were randomized to receive topical insulin or placebo in a prospective, double-blind and placebo-controlled, randomized clinical trial (NCT 01295177) of wound healing. Results and Conclusions: Expression of IR, IRS-1, IRS-2, SHC, ERK, and AKT are increased in the tissue of healing wounds compared to intact skin, suggesting that the insulin signaling pathway may have an important role in this process. These pathways were attenuated in the wounded skin of diabetic rats, in parallel with an increase in the time of complete wound healing. Upon topical application of insulin cream, the wound healing time of diabetic animals was normalized, followed by a reversal of defective insulin signal transduction. In addition, the treatment also increased expression of other proteins, such as eNOS (also in bone marrow), VEGF, and SDF-1 alpha in wounded skin. In diabetic patients, topical insulin cream markedly improved wound healing, representing an attractive and cost-free method for treating this devastating complication of diabetes.Sao Paulo Research Foundation (FAPESP)Sao Paulo Research Foundation (FAPESP)National Institute of Science and Technology (INCT)National Institute of Science and Technology (INCT)National Council for Scientific and Technological Development (CNPq)National Council for Scientific and Technological Development (CNPq

    Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection

    Get PDF
    Ischemic tolerance defines transient resistance to lethal ischemia gained by a prior sublethal noxious stimulus (i.e., preconditioning). This adaptive response is thought to be an evolutionarily conserved defense mechanism, observed in a wide variety of species. Preconditioning confers ischemic tolerance if not in all, in most organ systems, including the heart, kidney, liver, and small intestine. Since the first landmark experimental demonstration of ischemic tolerance in the gerbil brain in early 1990's, basic scientific knowledge on the mechanisms of cerebral ischemic tolerance increased substantially. Various noxious stimuli can precondition the brain, presumably through a common mechanism, genomic reprogramming. Ischemic tolerance occurs in two temporally distinct windows. Early tolerance can be achieved within minutes, but wanes also rapidly, within hours. Delayed tolerance develops in hours and lasts for days. The main mechanism involved in early tolerance is adaptation of membrane receptors, whereas gene activation with subsequent de novo protein synthesis dominates delayed tolerance. Ischemic preconditioning is associated with robust cerebroprotection in animals. In humans, transient ischemic attacks may be the clinical correlate of preconditioning leading to ischemic tolerance. Mimicking the mechanisms of this unique endogenous protection process is therefore a potential strategy for stroke prevention. Perhaps new remedies for stroke are very close, right in our cells

    c-Jun N-terminal kinases (JNKs) in myocardial and cerebral ischemia/reperfusion injury

    No full text
    © 2018 Shvedova, Anfinogenova, Atochina-Vasserman, Schepetkin and Atochin. In this article, we review the literature regarding the role of c-Jun N-terminal kinases (JNKs) in cerebral and myocardial ischemia/reperfusion injury. Numerous studies demonstrate that JNK-mediated signaling pathways play an essential role in cerebral and myocardial ischemia/reperfusion injury. JNK-associated mechanisms are involved in preconditioning and post-conditioning of the heart and the brain. The literature and our own studies suggest that JNK inhibitors may exert cardioprotective and neuroprotective properties. The effects of modulating the JNK-depending pathways in the brain and the heart are reviewed. Cardioprotective and neuroprotective mechanisms of JNK inhibitors are discussed in detail including synthetic small molecule inhibitors (AS601245, SP600125, IQ-1S, and SR-3306), ion channel inhibitor GsMTx4, JNK-interacting proteins, inhibitors of mixed-lineage kinase (MLK) and MLK-interacting proteins, inhibitors of glutamate receptors, nitric oxide (NO) donors, and anesthetics. The role of JNKs in ischemia/reperfusion injury of the heart in diabetes mellitus is discussed in the context of comorbidities. According to reviewed literature, JNKs represent promising therapeutic targets for protection of the brain and the heart against ischemic stroke and myocardial infarction, respectively. However, different members of the JNK family exert diverse physiological properties which may not allow for systemic administration of non-specific JNK inhibitors for therapeutic purposes. Currently available candidate JNK inhibitors with high therapeutic potential are identified. The further search for selective JNK3 inhibitors remains an important task

    Cell-Based Drug Delivery and Use of Nano-and Microcarriers for Cell Functionalization

    No full text
    © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Cell functionalization with recently developed various nano- and microcarriers for therapeutics has significantly expanded the application of cell therapy and targeted drug delivery for the effective treatment of a number of diseases. The aim of this progress report is to review the most recent advances in cell-based drug vehicles designed as biological transporter platforms for the targeted delivery of different drugs. For the design of cell-based drug vehicles, different pathways of cell functionalization, such as covalent and noncovalent surface modifications, internalization of carriers are considered in greater detail together with approaches for cell visualization in vivo. In addition, several animal models for the study of cell-assisted drug delivery are discussed. Finally, possible future developments and applications of cell-assisted drug vehicles toward targeted transport of drugs to a designated location with no or minimal immune response and toxicity are addressed in light of new pathways in the field of nanomedicine
    corecore