19 research outputs found

    Clinical Utility of Circulating Tumor DNA in Patients With Advanced KRAS<sup>G12C</sup>-Mutated NSCLC Treated With Sotorasib

    Get PDF
    Introduction: For patients with KRASG12C-mutated NSCLC who are treated with sotorasib, there is a lack of biomarkers to guide treatment decisions. We therefore investigated the clinical utility of pretreatment and on-treatment circulating tumor DNA (ctDNA) and treatment-emergent alterations on disease progression. Methods: Patients with KRASG12C-mutated NSCLC treated with sotorasib were prospectively enrolled in our biomarker study (NCT05221372). Plasma samples were collected before sotorasib treatment, at first-response evaluation and at disease progression. The TruSight Oncology 500 panel was used for ctDNA and variant allele frequency analysis. Tumor response and progression-free survival were assessed per Response Evaluation Criteria in Solid Tumors version 1.1. Results: Pretreatment KRASG12C ctDNA was detected in 50 of 66 patients (76%). Patients with detectable KRASG12C had inferior progression-free survival (hazard ratio [HR] 2.13 [95% confidence interval [CI]: 1.06–4.30], p = 0.031) and overall survival (HR 2.61 [95% CI: 1.16–5.91], p = 0.017). At first-response evaluation (n = 40), 29 patients (73%) had a molecular response. Molecular nonresponders had inferior overall survival (HR 3.58 [95% CI: 1.65–7.74], p = 0.00059). The disease control rate was significantly higher in those with a molecular response (97% versus 64%, p = 0.015). KRAS amplifications were identified as recurrent treatment-emergent alterations. Conclusions: Our data suggest detectable pretreatment KRASG12C ctDNA as a marker for poor prognosis and on-treatment ctDNA clearance as a marker for treatment response. We identified KRAS amplifications as a potential recurring resistance mechanism to sotorasib. Identifying patients with superior prognosis could aid in optimizing time of treatment initiation, and identifying patients at risk of early progression could allow for earlier treatment decisions.</p

    In-depth molecular analysis of combined and co-primary pulmonary large cell neuroendocrine carcinoma and adenocarcinoma

    Get PDF
    Up to 14% of large cell neuroendocrine carcinomas (LCNECs) are diagnosed in continuity with nonsmall cell lung carcinoma. In addition to these combined lesions, 1% to 7% of lung tumors present as co-primary tumors with multiple synchronous lesions. We evaluated molecular and clinicopathological characteristics of combined and co-primary LCNEC-adenocarcinoma (ADC) tumors. Ten patients with LCNEC-ADC (combined) and five patients with multiple synchronous ipsilateral LCNEC and ADC tumors (co-primary) were included. DNA was isolated from distinct tumor parts, and 65 cancer genes were analyzed by next generation sequencing. Immunohistochemistry was performed including neuroendocrine markers, pRb, Ascl1 and Rest. Pure ADC (N = 37) and LCNEC (N = 17) cases were used for reference. At least 1 shared mutation, indicating tumor clonality, was found in LCNEC- and ADC-parts of 10/10 combined tumors but only in 1/5 co-primary tumors. A range of identical mutations was observed in both parts of combined tumors: 8/10 contained ADC-related (EGFR/KRAS/STK11 and/or KEAP1), 4/10 RB1 and 9/10 TP53 mutations. Loss of pRb IHC was observed in 6/10 LCNEC- and 4/10 ADC-parts. The number and intensity of expression of Ascl1 and neuroendocrine markers increased from pure ADC (low) to combined ADC (intermediate) and combined and pure LCNEC (high). The opposite was true for Rest expression. In conclusion, all combined LCNEC-ADC tumors were clonally related indicating a common origin. A relatively high frequency of pRb inactivation was observed in both LCNEC- and ADC-parts, suggesting an underlying role in LCNEC-ADC development. Furthermore, neuroendocrine differentiation might be modulated by Ascl1(+) and Rest(-) expression

    Somatic mutations and copy number variations in breast cancers with heterogeneous HER2 amplification.

    Get PDF
    Intratumour heterogeneity fuels carcinogenesis and allows circumventing specific targeted therapies. HER2 gene amplification is associated with poor outcome in invasive breast cancer. Heterogeneous HER2 amplification has been described in 5-41% of breast cancers. Here, we investigated the genetic differences between HER2-positive and HER2-negative admixed breast cancer components. We performed an in-depth analysis to explore the potential heterogeneity in the somatic mutational landscape of each individual tumour component. Formalin-fixed, paraffin-embedded breast cancer tissue of ten patients with at least one HER2-negative and at least one HER2-positive component was microdissected. Targeted next-generation sequencing was performed using a customized 53-gene panel. Somatic mutations and copy number variations were analysed. Overall, the tumours showed a heterogeneous distribution of 12 deletions, 9 insertions, 32 missense variants and 7 nonsense variants in 26 different genes, which are (likely) pathogenic. Three splice site alterations were identified. One patient had an EGFR copy number gain restricted to a HER2-negative in situ component, resulting in EGFR protein overexpression. Two patients had FGFR1 copy number gains in at least one tumour component. Two patients had an 8q24 gain in at least one tumour component, resulting in a copy number increase in MYC and PVT1. One patient had a CCND1 copy number gain restricted to a HER2-negative tumour component. No common alternative drivers were identified in the HER2-negative tumour components. This series of 10 breast cancers with heterogeneous HER2 gene amplification illustrates that HER2 positivity is not an unconditional prerequisite for the maintenance of tumour growth. Many other molecular aberrations are likely to act as alternative or collaborative drivers. This study demonstrates that breast carcinogenesis is a dynamically evolving process characterized by a versatile somatic mutational profile, of which some genetic aberrations will be crucial for cancer progression, and others will be mere 'passenger' molecular anomalies

    Comparison of variant allele frequency and number of mutant molecules as units of measurement for circulating tumor DNA

    No full text
    Quantification of tumor‐specific variants (TSVs) in cell‐free DNA is rapidly evolving as a prognostic and predictive tool in patients with cancer. Currently, both variant allele frequency (VAF) and number of mutant molecules per mL plasma are used as units of measurement to report those TSVs. However, it is unknown to what extent both units of measurement agree and what are the factors underlying an existing disagreement. To study the agreement between VAF and mutant molecules in current clinical studies, we analyzed 1116 TSVs from 338 patients identified with next‐generation sequencing (NGS) or digital droplet PCR (ddPCR). On different study cohorts, a Deming regression analysis was performed and its 95% prediction interval was used as surrogate for the limits of agreement between VAF and number of mutant molecules per mL and to identify outliers. VAF and number of mutant molecules per mL plasma yielded greater agreement when using ddPCR than NGS. In case of discordance between VAF and number of mutant molecules per mL, insufficient molecular coverage in NGS and high cell‐free DNA concentration were the main responsible factors. We propose several optimization steps needed to bring monitoring of TSVs in cell‐free DNA to its full potential

    Comparison of variant allele frequency and number of mutant molecules as units of measurement for circulating tumor DNA

    No full text
    Quantification of tumor‐specific variants (TSVs) in cell‐free DNA is rapidly evolving as a prognostic and predictive tool in patients with cancer. Currently, both variant allele frequency (VAF) and number of mutant molecules per mL plasma are used as units of measurement to report those TSVs. However, it is unknown to what extent both units of measurement agree and what are the factors underlying an existing disagreement. To study the agreement between VAF and mutant molecules in current clinical studies, we analyzed 1116 TSVs from 338 patients identified with next‐generation sequencing (NGS) or digital droplet PCR (ddPCR). On different study cohorts, a Deming regression analysis was performed and its 95% prediction interval was used as surrogate for the limits of agreement between VAF and number of mutant molecules per mL and to identify outliers. VAF and number of mutant molecules per mL plasma yielded greater agreement when using ddPCR than NGS. In case of discordance between VAF and number of mutant molecules per mL, insufficient molecular coverage in NGS and high cell‐free DNA concentration were the main responsible factors. We propose several optimization steps needed to bring monitoring of TSVs in cell‐free DNA to its full potential

    Efficacy and Tolerability of Osimertinib and Sotorasib Combination Treatment for Osimertinib Resistance Caused by <i>KRAS </i>G12C Mutation:A Report of Two Cases

    No full text
    Osimertinib, a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), is currently considered the standard first-line systemic treatment for patients with advanced EGFR-mutated non–small-cell lung cancer (NSCLC). Although osimertinib has significantly improved disease outcomes,1 resistance inevitably develops. The acquired resistance mechanisms can be highly heterogeneous, including on- and off-target mechanisms.2,3 Although aberrations in the RAS-MAPK pathway have been known to lead to osimertinib resistance, the emergence of KRAS G12C mutations in this setting has rarely been reported. Recently sotorasib, a first-in-class KRAS G12C inhibitor has been approved for patients with KRAS G12C–mutated locally advanced or metastatic NSCLC, which provides an opportunity to directly target KRAS G12C.4 Here, we report two cases of resistance to first-line osimertinib caused by acquired KRAS G12C mutations. Both patients were treated with a combination of osimertinib and sotorasib.</p
    corecore