4,909 research outputs found
Hydrogen-Related Conversion Processes of Ge-Related Point Defects in Silica Triggered by UV Laser Irradiation
The conversion processes of Ge-related point defects triggered in amorphous
SiO2 by 4.7eV laser exposure were investigated. Our study has focused on the
interplay between the (=Ge•-H) H(II) center and the twofold coordinated
Ge defect (=Ge••). The former is generated in the post-irradiation
stage, while the latter decays both during and after exposure. The
post-irradiation decay kinetics of =Ge•• is isolated and found to
be anti-correlated to the growth of H(II), at least at short times. From this
finding it is suggested that both processes are due to trapping of radiolytic
H0 at the diamagnetic defect site. Furthermore, the anti-correlated behavior is
preserved also under repeated irradiation: light at 4.7eV destroys the already
formed H(II) centers and restore their precursors =Ge••. This
process leads to repeatability of the post-irradiation kinetics of the two
species after multiple laser exposures. A comprehensive scheme of chemical
reactions explaining the observed post-irradiation processes is proposed and
tested against experimental data.Comment: 25 pages, 7 figures, submitted to Phys. Rev.
Strong impact of light induced conical intersections on the spectrum of diatomic molecules
We show that dressing of diatomic molecules by running laser waves gives rise
to conical intersections (CIs). Due to presence of such CIs, the rovibronic
molecular motions are strongly coupled. A pronounced impact of the CI on the
spectrum of molecule is demonstrated via numerical calculation for weak
and moderate laser intensity, and an experiment is suggested on this basis. The
position of the light induced CI and the strength of its non-adiabatic
couplings can be chosen by changing the frequency and intensity of the used
running laser wave. This offers new possibilities to control the photo-induced
rovibronic molecular dynamics.Comment: 4 pages, 7 figure
Molecular Dynamics Simulation of Polymer-Metal Bonds
Molecular simulation is becoming a very powerful tool for studying dynamic phenomena in materials. The simulation yields information about interaction at length and time scales unattainable by experimental measurements and unpredictable by continuum theories. This is especially meaningful when referring to bonding between a polymer and a metal substrate. A very important characteristic of polymers is that their physical properties do not rely on the detailed chemical structure of the molecular chains but only on their flexibility, and accordingly they will be able to adopt different conformations. In this paper, a molecular simulation of the bonding between vinyl ester polymer and steel is presented. Four different polymers with increasing chain lengths have been studied. Atomic co-ordinates are adjusted in order to reduce the molecular energy. Conformational changes in the macromolecules have been followed to obtain the polymer pair correlation function. Radius of gyration and end-to-end distance distributions of the individual chains have been used as a quantitative measurement of their flexibility. There exists a correlation between flexibility of the molecular chains and the energy of adhesion between the polymer and the metal substrate. Close contacts between the two materials are established at certain points but every atom up to a certain distance from the interface contributes to the total value of the adhesion energy of the system
Gaussian-Charge Polarizable Interaction Potential for Carbon Dioxide
A number of simple pair interaction potentials of the carbon dioxide molecule
are investigated and found to underestimate the magnitude of the second virial
coefficient in the temperature interval 220 K to 448 K by up to 20%. Also the
third virial coefficient is underestimated by these models. A rigid,
polarizable, three-site interaction potential reproduces the experimental
second and third virial coefficients to within a few percent. It is based on
the modified Buckingham exp-6 potential, an anisotropic Axilrod-Teller
correction and Gaussian charge densities on the atomic sites with an inducible
dipole at the center of mass. The electric quadrupole moment, polarizability
and bond distances are set to equal experiment. Density of the fluid at 200 and
800 bars pressure is reproduced to within some percent of observation over the
temperature range 250 K to 310 K. The dimer structure is in passable agreement
with electronically resolved quantum-mechanical calculations in the literature,
as are those of the monohydrated monomer and dimer complexes using the
polarizable GCPM water potential. Qualitative agreement with experiment is also
obtained, when quantum corrections are included, for the relative stability of
the trimer conformations, which is not the case for the pair potentials.Comment: Error in the long-range correction fixed and three-body dispersion
introduced. 32 pages (incl. title page), 7 figures, 9 tables, double-space
Local Behavior of the First-Order Gradient Correction to the Thomas-Fermi Kinetic Energy Functional
The first order gradient correction to the Thomas-Fermi functional, proposed
by Haq, Chattaraj and Deb (Chem. Phys. Lett. vol. 81, 8031, 1984) has been
studied by evaluating both the total kinetic energy and the local kinetic
energy density. For testing the kinetic energy density we evaluate its
deviation from an exact result through a quality factor, a parameter that
reflects the quality of the functionals in a better way than their relative
errors. The study is performed on two different systems: light atoms (up to
Z=18) and a noninteracting model of fermions confined in a Coulombic-type
potential. It is found than this approximation gives very low relative errors
and a better local behavior than any of the usual generalized gradient
approximation semilocal kinetic density functionals.Comment: 7 pages, 2 tables, 4 figure
Molecular orbitals and strong-field approximation
V.I. Usachenko and S.-I. Chu [Phys. Rev. A {\bf 71}, 063410 (2005)] discuss
the molecular strong-field approximation in the velocity gauge formulation and
indicate that some of our earlier velocity gauge calculations are inaccurate.
Here we comment on the results of Usachenko and Chu. First, we show that the
molecular orbitals used by Usachenko and Chu do not have the correct symmetry,
and second, that it is an oversimplification to describe the molecular orbitals
in terms of just a single linear combination of two atomic orbitals. Finally,
some values for the generalized Bessel function are given for comparison.Comment: 4 pages, 3 figure
A quantum mechanical model of the upper bounds of the cascading contribution to the second hyperpolarizability
Microscopic cascading of second-order nonlinearities between two molecules
has been proposed to yield an enhanced third-order molecular nonlinear-optical
response. In this contribution, we investigate the two-molecule cascaded second
hyperpolarizability and show that it will never exceed the fundamental limit of
a single molecule with the same number of electrons as the two-molecule system.
We show the apparent divergence behavior of the cascading contribution to the
second hyperpolarizability vanishes when properly taking into account the
intermolecular interactions. Although cascading can never lead to a larger
nonlinear-optical response than a single molecule, it provides alternative
molecular design configurations for creating materials with large third-order
susceptibilities that may be difficult to design into a single molecule.Comment: 13 pages, 9 figures, 1 tabl
Computational Design of Chemical Nanosensors: Metal Doped Carbon Nanotubes
We use computational screening to systematically investigate the use of
transition metal doped carbon nanotubes for chemical gas sensing. For a set of
relevant target molecules (CO, NH3, H2S) and the main components of air (N2,
O2, H2O), we calculate the binding energy and change in conductance upon
adsorption on a metal atom occupying a vacancy of a (6,6) carbon nanotube.
Based on these descriptors, we identify the most promising dopant candidates
for detection of a given target molecule. From the fractional coverage of the
metal sites in thermal equilibrium with air, we estimate the change in the
nanotube resistance per doping site as a function of the target molecule
concentration assuming charge transport in the diffusive regime. Our analysis
points to Ni-doped nanotubes as candidates for CO sensors working under typical
atmospheric conditions
Kinetic Energy Density Study of Some Representative Semilocal Kinetic Energy Functionals
There is a number of explicit kinetic energy density functionals for
non-interacting electron systems that are obtained in terms of the electron
density and its derivatives. These semilocal functionals have been widely used
in the literature. In this work we present a comparative study of the kinetic
energy density of these semilocal functionals, stressing the importance of the
local behavior to assess the quality of the functionals. We propose a quality
factor that measures the local differences between the usual orbital-based
kinetic energy density distributions and the approximated ones, allowing to
ensure if the good results obtained for the total kinetic energies with these
semilocal functionals are due to their correct local performance or to error
cancellations. We have also included contributions coming from the laplacian of
the electron density to work with an infinite set of kinetic energy densities.
For all the functionals but one we have found that their success in the
evaluation of the total kinetic energy are due to global error cancellations,
whereas the local behavior of their kinetic energy density becomes worse than
that corresponding to the Thomas-Fermi functional.Comment: 12 pages, 3 figure
Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration
In this paper we propose several models that describe the dynamics of liquid
films which are covered by a high concentration layer of insoluble surfactant.
First, we briefly review the 'classical' hydrodynamic form of the coupled
evolution equations for the film height and surfactant concentration that are
well established for small concentrations. Then we re-formulate the basic model
as a gradient dynamics based on an underlying free energy functional that
accounts for wettability and capillarity. Based on this re-formulation in the
framework of nonequilibrium thermodynamics, we propose extensions of the basic
hydrodynamic model that account for (i) nonlinear equations of state, (ii)
surfactant-dependent wettability, (iii) surfactant phase transitions, and (iv)
substrate-mediated condensation. In passing, we discuss important differences
to most of the models found in the literature.Comment: 31 pages, 2 figure
- …