349 research outputs found

    Developing interventions to change recycling behaviors: A case study of applying behavioral science

    Get PDF
    The Theoretical Domains Framework (TDF) and the Behavior Change Wheel (BCW) are frameworks that can be used to develop recycling interventions. The aim of this study was to demonstrate the utility of these frameworks for developing recycling interventions. 20 semistructured interviews with university building users were analyzed using the TDF and BCW. Environmental context and resources, beliefs about consequences, knowledge, and intention were identified as the key theoretical domains influencing recycling behaviors. The BCW was used to develop recommendations for intervention. This research is the first case study to demonstrate how the TDF and the BCW can be used to develop recycling interventions

    An integrated computational-experimental approach reveals Yersinia pestis genes essential across a narrow or a broad range of environmental conditions

    Get PDF
    This is the final version. Available from BMC via the DOI in this recordAvailability of data and materials: The datasets supporting the conclusions of this article are available at the NCBI GEO website https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100226.BACKGROUND: The World Health Organization has categorized plague as a re-emerging disease and the potential for Yersinia pestis to also be used as a bioweapon makes the identification of new drug targets against this pathogen a priority. Environmental temperature is a key signal which regulates virulence of the bacterium. The bacterium normally grows outside the human host at 28 °C. Therefore, understanding the mechanisms that the bacterium used to adapt to a mammalian host at 37 °C is central to the development of vaccines or drugs for the prevention or treatment of human disease. RESULTS: Using a library of over 1 million Y. pestis CO92 random mutants and transposon-directed insertion site sequencing, we identified 530 essential genes when the bacteria were cultured at 28 °C. When the library of mutants was subsequently cultured at 37 °C we identified 19 genes that were essential at 37 °C but not at 28 °C, including genes which encode proteins that play a role in enabling functioning of the type III secretion and in DNA replication and maintenance. Using genome-scale metabolic network reconstruction we showed that growth conditions profoundly influence the physiology of the bacterium, and by combining computational and experimental approaches we were able to identify 54 genes that are essential under a broad range of conditions. CONCLUSIONS: Using an integrated computational-experimental approach we identify genes which are required for growth at 37 °C and under a broad range of environments may be the best targets for the development of new interventions to prevent or treat plague in humans.This work was funded by the Defence Science and Technology Laboratory, award DSTLX-1000060221 (WP1)

    A Noise Trimming and Positional Significance of Transposon Insertion System to Identify Essential Genes in Yersinia pestis

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Massively parallel sequencing technology coupled with saturation mutagenesis has provided new and global insights into gene functions and roles. At a simplistic level, the frequency of mutations within genes can indicate the degree of essentiality. However, this approach neglects to take account of the positional significance of mutations - the function of a gene is less likely to be disrupted by a mutation close to the distal ends. Therefore, a systematic bioinformatics approach to improve the reliability of essential gene identification is desirable. We report here a parametric model which introduces a novel mutation feature together with a noise trimming approach to predict the biological significance of Tn5 mutations. We show improved performance of essential gene prediction in the bacterium Yersinia pestis, the causative agent of plague. This method would have broad applicability to other organisms and to the identification of genes which are essential for competitiveness or survival under a broad range of stresses.This work was supported by the Defence Science and Technology Laboratory under contract DSTLX-1000060221 (WP1)

    Global Analysis of Genes Essential for Francisella tularensis Schu S4 Growth In Vitro and for Fitness during Competitive Infection of Fischer 344 Rats

    Get PDF
    This is the final version. Available from American Society for Microbiology via the DOI in this record The highly virulent intracellular pathogen Francisella tularensis is a Gram-negative bacterium that has a wide host range, including humans, and is the causative agent of tularemia. To identify new therapeutic drug targets and vaccine candidates and investigate the genetic basis of Francisella virulence in the Fischer 344 rat, we have constructed an F. tularensis Schu S4 transposon library. This library consists of more than 300,000 unique transposon mutants and represents a transposon insertion for every 6 bp of the genome. A transposon-directed insertion site sequencing (TraDIS) approach was used to identify 453 genes essential for growth in vitro Many of these essential genes were mapped to key metabolic pathways, including glycolysis/gluconeogenesis, peptidoglycan synthesis, fatty acid biosynthesis, and the tricarboxylic acid (TCA) cycle. Additionally, 163 genes were identified as required for fitness during colonization of the Fischer 344 rat spleen. This in vivo selection screen was validated through the generation of marked deletion mutants that were individually assessed within a competitive index study against the wild-type F. tularensis Schu S4 strain.IMPORTANCE The intracellular bacterial pathogen Francisella tularensis causes a disease in humans characterized by the rapid onset of nonspecific symptoms such as swollen lymph glands, fever, and headaches. F. tularensis is one of the most infectious bacteria known and following pulmonary exposure can have a mortality rate exceeding 50% if left untreated. The low infectious dose of this organism and concerns surrounding its potential as a biological weapon have heightened the need for effective and safe therapies. To expand the repertoire of targets for therapeutic development, we initiated a genome-wide analysis. This study has identified genes that are important for F. tularensis under in vitro and in vivo conditions, providing candidates that can be evaluated for vaccine or antibacterial development.Biotechnology & Biological Sciences Research Council (BBSRC)Defence Science and Technology Laboratory (DSTL

    Therapeutic Radionuclides: Making the Right Choice

    Full text link
    Recently, there has been a resurgence of interest in nuclear medicine therapeutic procedures. Using unsealed sources for therapy is not a new concept; it has been around since the beginnings of nuclear medicine. Treatment of thyroid disorders with radioiodine is a classic example. The availability of radionuclides with suitable therapeutic properties for specific applications, as well as methods for their selective targeting to diseased tissue have, however, remained the main obstacles for therapy to assume a more widespread role in nuclear medicine. Nonetheless, a number of new techniques that have recently emerged, (e.g., tumor therapy with radiolabeled monoclonal antibodies, treatment of metastatic bone pain, etc.) appear to have provided a substantial impetus to research on production of new therapeutic radionuclides. Although there are a number of new therapeutic approaches requiring specific radionuclides, only selected broad areas will be used as examples in this article

    Identifying models of delivery, care domains and quality indicators relevant to palliative day services: a scoping review protoco

    Get PDF
    Abstract Background With an ageing population and increasing numbers of people with life-limiting illness, there is a growing demand for palliative day services. There is a need to measure and demonstrate the quality of these services, but there is currently little agreement on which aspects of care should be used to do this. The aim of the scoping review will be to map the extent, range and nature of the evidence around models of delivery, care domains and existing quality indicators used to evaluate palliative day services. Methods Electronic databases (MEDLINE, EMBASE, CINAHL, PsycINFO, Cochrane Central Register of Controlled Trials) will be searched for evidence using consensus development methods; randomised or quasi-randomised controlled trials; mixed methods; and prospective, longitudinal or retrospective case-control studies to develop or test quality indicators for evaluating palliative care within non-residential settings, including day hospices and community or primary care settings. At least two researchers will independently conduct all searches, study selection and data abstraction procedures. Meta-analyses and statistical methods of synthesis are not planned as part of the review. Results will be reported using numerical counts, including number of indicators in each care domain and by using qualitative approach to describe important indicator characteristics. A conceptual model will also be developed to summarise the impact of different aspects of quality in a palliative day service context. Methodological quality relating to indicator development will be assessed using the Appraisal of Indicators through Research and Evaluation (AIRE) tool. Overall strength of evidence will be assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system. Final decisions on quality assessment will be made via consensus between review authors. Discussion Identifying, developing and implementing evidence-based quality indicators is critical to the evaluation and continued improvement of palliative care. Review findings will be used to support clinicians and policymakers make decisions on which quality indicators are most appropriate for evaluating day services at the patient and service level, and to identify areas for further research

    The (F)utility of the thallium-201 quantitative lung/myocardial ratio in the detection of coronary artery disease

    Full text link
    Exercise-induced increases in pulmonary uptake of thallium-201 ( 201 Tl) have been associated with exercise-induced myocardial dysfunction. To evaluate this phenomenon more replicably, a quantitative semi-automated computer program was used to generate, from anterior exercise and delayed views, lung-myocardial ratios (LMR) of 201 Tl uptake in 78 patients [40 normal, 38 with coronary artery disease (CAD)]. Patients with CAD had a significantly higher mean exercise lung myocardial ratio (EXLMR) than normals (30.8 vs. 27.3; P < 0.003). In patients with adequate exercise (≥85% of an age-adjusted maximal heart rate), the EXLMRs of CAD patients were significantly higher than those of normals (29.7 vs. 25.5; P =0.003). However, this difference between CAD and normal patients was not apparent in a patient subgroup with submaximal exercise levels (< 85% of an age-adjusted maximal heart rate). In both normal and CAD patients, EXLMR decreased with increasing exercise levels ( r =-0.555; P =0.007). In patients with 201 Tl scans lacking visually defined perfusion defects (visually normal), an elevated LMR detected 60% of CAD cases with 81% specificity. A considerably elevated EXLMR in patients achieving adequate exercise should suggest the presence of CAD, even if there are no visually apparent cardiac perfusion defects. With submaximal exercise, however, the EXLMR is not a useful discriminator between CAD patients and normals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46823/1/259_2004_Article_BF00638787.pd

    Pediatric interventional radiography equipment: safety considerations

    Get PDF
    This paper discusses pediatric image quality and radiation dose considerations in state-of-the-art fluoroscopic imaging equipment. Although most fluoroscopes are capable of automatically providing good image quality on infants, toddlers, and small children, excessive radiation dose levels can result from design deficiencies of the imaging device or inappropriate configuration of the equipment’s capabilities when imaging small body parts. Important design features and setup choices at installation and during the clinical use of the imaging device can improve image quality and reduce radiation exposure levels in pediatric patients. Pediatric radiologists and cardiologists, with the help of medical physicists, need to understand the issues involved in creating good image quality at reasonable pediatric patient doses. The control of radiographic technique factors by the generator of the imaging device must provide a large dynamic range of mAs values per exposure pulse during both fluoroscopy and image recording as a function of patient girth, which is the thickness of the patient in the posterior–anterior projection at the umbilicus (less than 10 cm to greater than 30 cm). The range of pulse widths must be limited to less than 10 ms in children to properly freeze patient motion. Variable rate pulsed fluoroscopy can be leveraged to reduce radiation dose to the patient and improve image quality. Three focal spots with nominal sizes of 0.3 mm to 1 mm are necessary on the pediatric unit. A second, lateral imaging plane might be necessary because of the child’s limited tolerance of contrast medium. Spectral and spatial beam shaping can improve image quality while reducing the radiation dose. Finally, the level of entrance exposure to the image receptor of the fluoroscope as a function of operator choices, of added filter thickness, of selected pulse rate, of the selected field-of-view and of the patient girth all must be addressed at installation
    corecore