1,298 research outputs found
Origin of Rashba-splitting in the quantized subbands at Bi2Se3 surface
We study the band structure of the topological
insulator (111) surface using angle-resolved photoemission spectroscopy. We
examine the situation where two sets of quantized subbands exhibiting different
Rashba spin-splitting are created via bending of the conduction (CB) and the
valence (VB) bands at the surface. While the CB subbands are strongly Rashba
spin-split, the VB subbands do not exhibit clear spin-splitting. We find that
CB and VB experience similar band bending magnitudes, which means, a
spin-splitting discrepancy due to different surface potential gradients can be
excluded. On the other hand, by comparing the experimental band structure to
first principles LMTO band structure calculations, we find that the strongly
spin-orbit coupled Bi 6 orbitals dominate the orbital character of CB,
whereas their admixture to VB is rather small. The spin-splitting discrepancy
is, therefore, traced back to the difference in spin-orbit coupling between CB
and VB in the respective subbands' regions
Tuning independently Fermi energy and spin splitting in Rashba systems: Ternary surface alloys on Ag(111)
By detailed first-principles calculations we show that the Fermi energy and
the Rashba splitting in disordered ternary surface alloys (BiPbSb)/Ag(111) can
be independently tuned by choosing the concentrations of Bi and Pb. The
findings are explained by three fundamental mechanisms, namely the relaxation
of the adatoms, the strength of the atomic spin-orbit coupling, and band
filling. By mapping the Rashba characteristics,i.e.the splitting and the Rashba
energy, and the Fermi energy of the surface states in the complete range of
concentrations. Our results suggest to investigate experimentally effects which
rely on the Rashba spin-orbit coupling in dependence on spin-orbit splitting
and band filling.Comment: 11 pages, 3 figure
Hidden one-dimensional electronic structure and non-Fermi liquid angle resolved photoemission line shapes of -MoO
We report angle resolved photoemission (ARPES) spectra of
-MoO, a layered metal that undergoes two charge density wave
(CDW) transitions at 109 K and 30 K. We have directly observed the ``hidden
one-dimensional (hidden-1d)'' Fermi surface and an anisotropic gap opening
associated with the 109 K transition, in agreement with the band theoretical
description of the CDW transition. In addition, as in other hidden-1d materials
such as NaMoO, the ARPES line shapes show certain anomalies, which
we discuss in terms of non-Fermi liquid physics and possible roles of disorder.Comment: 3 figures; Erratum added to include missed reference
Interplay Between Yu-Shiba-Rusinov States and Multiple Andreev Reflections
Motivated by recent scanning tunneling microscopy experiments on single
magnetic impurities on superconducting surfaces, we present here a
comprehensive theoretical study of the interplay between Yu-Shiba-Rusinov bound
states and (multiple) Andreev reflections. Our theory is based on a combination
of an Anderson model with broken spin degeneracy and nonequilibrium Green's
function techniques that allows us to describe the electronic transport through
a magnetic impurity coupled to superconducting leads for arbitrary junction
transparency. Using this combination we are able to elucidate the different
tunneling processes that give a significant contribution to the subgap
transport. In particular, we predict the occurrence of a large variety of
Andreev reflections mediated by Yu-Shiba-Rusinov bound states that clearly
differ from the standard Andreev processes in non-magnetic systems. Moreover,
we provide concrete guidelines on how to experimentally identify the subgap
features originating from these tunneling events. Overall, our work provides
new insight into the role of the spin degree of freedom in Andreev transport
physics.Comment: 15 pages, 10 figure
Recommended from our members
Seed size and its rate of evolution correlate with species diversification across angiosperms
Species diversity varies greatly across the different taxonomic groups that comprise the Tree of Life (ToL). This imbalance is particularly conspicuous within angiosperms, but is largely unexplained. Seed mass is one trait that may help clarify why some lineages diversify more than others because it confers adaptation to different environments, which can subsequently influence speciation and extinction. The rate at which seed mass changes across the angiosperm phylogeny may also be linked to diversification by increasing reproductive isolation and allowing access to novel ecological niches. However, the magnitude and direction of the association between seed mass and diversification has not been assessed across the angiosperm phylogeny. Here, we show that absolute seed size and the rate of change in seed size are both associated with variation in diversification rates. Based on the largest available angiosperm phylogenetic tree, we found that smaller-seeded plants had higher rates of diversification, possibly due to improved colonisation potential. The rate of phenotypic change in seed size was also strongly positively correlated with speciation rates, providing rare, large-scale evidence that rapid morphological change is associated with species divergence. Our study now reveals that variation in morphological traits and, importantly, the rate at which they evolve can contribute to explaining the extremely uneven distribution of diversity across the ToL.Gatsby Charitable Trust
Wellcome Trust
Sir Isaac Newton Trust
BBSRC DTP grant to EF Miller (BB/M011194/1
Early warning smartphone diagnostics for water security and analysis using real-time pH mapping
© 2015, The Author(s). Early detection of environmental disruption, unintentional or otherwise, is increasingly desired to ensure hazard minimization in many settings. Here, using a field-portable, smartphone fluorimeter to assess water quality based on the pH response of a designer probe, a map of pH of public tap water sites has been obtained. A custom designed Android application digitally processed and mapped the results utilizing the global positioning system (GPS) service of the smartphone. The map generated indicates no disruption in pH for all sites measured, and all the data are assessed to fall inside the upper limit of local government regulations, consistent with authority reported measurements. This implementation demonstrates a new security concept: network environmental forensics utilizing the potential of novel smartgrid analysis with wireless sensors for the detection of potential disruption to water quality at any point in the city. This concept is applicable across all smartgrid strategies within the next generation of the Internet of Things and can be extended on national and global scales to address a range of target analytes, both chemical and biological
Adaptive intrapatient dose escalation of cisplatin in combination with low-dose vp16 in patients with nonsmall cell lung cancer
The objective of this phase II and pharmacologic study was to explore the feasibility toxicity and activity of adaptive intrapatient dose escalation of cisplatin in a dose-intensive weekly schedule using predefined levels of exposure, with the ultimate aim to improve the antitumour activity of the therapy in patients with nonsmall cell lung cancer (NSCLC). Platinum DNA-adduct levels in peripheral white blood cells during treatment were used as the primary parameter for adaptive dosing. If DNA-adduct levels were not available, the area under the concentration-time curve (AUC) of unbound platinum in plasma was used for dose adaptation. Target levels for DNA-adducts and AUC have been defined in a previously performed pharmacologic study. The feasibility of adaptive dosing was tested in 76 patients with stage IIIB and IV NSCLC, who were planned to receive 6 weekly courses of cisplatin at a starting dose of 70 mg m-2, together with daily low oral dose of 50 mg VP16. In total, 37 patients (49%) who were given more than one course received a dose increase varying from 10 to 55%. The majority of patients reached the defined target levels by a dose increase during course two. Relevant grade 2 neurotoxicity was observed in eight (10%) patients and reversible ototoxicity grade 2 in 14 (18%) patients. The strategy of adaptive intrapatient dose adjustment of cisplatin is practically feasible in a research setting even when results for dose adaptation have to be reported within a short time-period of I week. The toxicity appeared to be manageable in this cohort of patients. In some patients, exposure after the standard dose was substantially lower than the defined target level and significant dose escalations of more than 50% had to be applied. The response rate (RR) was relatively high: overall 40% (29 out of 72 patients) partial remission (PR), in patients with stage IIIB the RR was 60% (15 out of 25 patients) and with stage IV 30% (14 out of 47 patients). Randomised studies are needed to determine whether the adaptive dosing strategy results in better efficacy than standard dosing
- …