31 research outputs found

    The role of peripheral vision in implicit contextual cuing

    Get PDF
    Implicit contextual cuing refers to the ability to learn the association between contextual information of our environment and a specific target, which can be used to guide attention during visual search. It was recently suggested that the storage of a snapshot image of the local context of a target underlies implicit contextual cuing. To make such a snapshot, it is necessary to use peripheral vision. In order to test whether peripheral vision can underlie implicit contextual cuing, we used a covert visual search task, in which participants were required to indicate the orientation of a target stimulus while foveating a fixation cross. The response times were shorter when the configuration of the stimuli was repeated than when the configuration was new. Importantly, this effect was still found after 10 days, indicating that peripherally perceived spatial context information can be stored in memory for long periods of time. These results indicate that peripheral vision can be used to make a snapshot of the local context of a targetThis research was supported by a grant from the BIAL Foundation (No. 73/06) and the FCT (SFRH/BPD/22088/2005

    A Direct Comparison of Local-Global Integration in Autism and other Developmental Disorders: Implications for the Central Coherence Hypothesis

    Get PDF
    The weak central coherence hypothesis represents one of the current explanatory models in Autism Spectrum Disorders (ASD). Several experimental paradigms based on hierarchical figures have been used to test this controversial account. We addressed this hypothesis by testing central coherence in ASD (n = 19 with intellectual disability and n = 20 without intellectual disability), Williams syndrome (WS, n = 18), matched controls with intellectual disability (n = 20) and chronological age-matched controls (n = 20). We predicted that central coherence should be most impaired in ASD for the weak central coherence account to hold true. An alternative account includes dorsal stream dysfunction which dominates in WS. Central coherence was first measured by requiring subjects to perform local/global preference judgments using hierarchical figures under 6 different experimental settings (memory and perception tasks with 3 distinct geometries with and without local/global manipulations). We replicated these experiments under 4 additional conditions (memory/perception*local/global) in which subjects reported the correct local or global configurations. Finally, we used a visuoconstructive task to measure local/global perceptual interference. WS participants were the most impaired in central coherence whereas ASD participants showed a pattern of coherence loss found in other studies only in four task conditions favoring local analysis but it tended to disappear when matching for intellectual disability. We conclude that abnormal central coherence does not provide a comprehensive explanation of ASD deficits and is more prominent in populations, namely WS, characterized by strongly impaired dorsal stream functioning and other phenotypic traits that contrast with the autistic phenotype. Taken together these findings suggest that other mechanisms such as dorsal stream deficits (largest in WS) may underlie impaired central coherence

    Brain areas involved in spatial working memory

    Get PDF
    Spatial working memory entails the ability to keep spatial information active in working memory over a short period of time. To study the areas of the brain that are involved in spatial working memory, a group of stroke patients was tested with a spatial search task. Patients and healthy controls were asked to search through a number of boxes shown at different locations on a touch-sensitive computer screen in order to find a target object. In subsequent trials, new target objects were hidden in boxes that were previously empty. Within-search errors were made if a participant returned to an already searched box; between-search errors occurred if a participant returned to a box that was already known to contain a target item. The use of a strategy to remember the locations of the target objects was calculated as well. Damage to the right posterior parietal and right dorsolateral prefrontal cortex impaired the ability to keep spatial information [`]on-line', as was indicated by performance on the Corsi Block-Tapping task and the within-search errors. Moreover, patients with damage to the right posterior parietal cortex, the right dorsolateral prefrontal cortex and the hippocampal formation bilaterally made more between-search errors, indicating the importance of these areas in maintaining spatial information in working memory over an extended time period.http://www.sciencedirect.com/science/article/B6T0D-4HM7WH2-2/1/b6b13c7b404377bae2b8cf632eb61fe

    A Novel Ecological Approach Reveals Early Executive Function Impairments in Huntington’s Disease

    Get PDF
    Introduction: Impairments in executive functions are common in neurogenetic disorders such as Huntington’s disease (HD) and are thought to significantly influence the patient’s functional status. Reliable tools with higher ecological validity that can assess and predict the impact of executive dysfunction in daily-life performance are needed. This study aimed to develop and validate a novel non-immersive virtual reality task (“EcoKitchen”) created with the purpose of capturing cognitive and functional changes shown by HD carriers without clinical manifestations of the disease (Premanifest HD), in a more realistic setting.Materials and Methods: We designed a virtual reality task with three blocks of increasing executive load. The performance of three groups (Controls, CTRL; Premanifest HD individuals, HP; Early Manifest HD patients, HD) was compared in four main components of the study protocol: the EcoKitchen; a subjective (self-report) measure – “The Adults and Older Adults Functional Assessment Inventory (IAFAI)”; the “Behavioural Assessment of Dysexecutive Syndrome battery (BADS)”; and a conventional neuropsychological test battery. We also examined statistical associations between EcoKitchen and the other executive, functional and clinical measures used.Results: The HD group showed deficits in all the assessment methods used. In contrast, the HP group was only found to be impaired in the EcoKitchen task, particularly in the most cognitively demanding blocks, where they showed a higher number of errors compared to the CTRL group. Statistically significant correlations were identified between the EcoKitchen, measures of the other assessment tools, and HD clinical features.Discussion: The EcoKitchen task, developed as an ecological executive function assessment tool, was found to be sensitive to early deficits in this domain. Critically, in premanifest HD individuals, it identifies dysfunction prior to symptom onset. Further it adds a potential tool for diagnosis and management of the patients’ real-life problems

    The role of the amygdala and the basal ganglia in visual processing of central vs. peripheral emotional content

    No full text
    In human cognition, most relevant stimuli, such as faces, are processed in central vision. However, it is widely believed that recognition of relevant stimuli (e.g. threatening animal faces) at peripheral locations is also important due to their survival value. Moreover, task instructions have been shown to modulate brain regions involved in threat recognition (e.g. the amygdala). In this respect it is also controversial whether tasks requiring explicit focus on stimulus threat content vs. implicit processing differently engage primitive subcortical structures involved in emotional appraisal. Here we have addressed the role of central vs. peripheral processing in the human amygdala using animal threatening vs. non-threatening face stimuli. First, a simple animal face recognition task with threatening and non-threatening animal faces, as well as non-face control stimuli, was employed in naïve subjects (implicit task). A subsequent task was then performed with the same stimulus categories (but different stimuli) in which subjects were told to explicitly detect threat signals. We found lateralized amygdala responses both to the spatial location of stimuli and to the threatening content of faces depending on the task performed: the right amygdala showed increased responses to central compared to left presented stimuli specifically during the threat detection task, while the left amygdala was better prone to discriminate threatening faces from non-facial displays during the animal face recognition task. Additionally, the right amygdala responded to faces during the threat detection task but only when centrally presented. Moreover, we have found no evidence for superior responses of the amygdala to peripheral stimuli. Importantly, we have found that striatal regions activate differentially depending on peripheral vs. central processing of threatening faces. Accordingly, peripheral processing of these stimuli activated more strongly the putaminal region, while central processing engaged mainly the caudate nucleus. We conclude that the human amygdala has a central bias for face stimuli, and that visual processing recruits different striatal regions, putaminal or caudate based, depending on the task and on whether peripheral or central visual processing is involved.PEst-C/SAU/UI3282/2011CENTRO-07-ST24-FEDER-00205FP7-HEALTH-2013-INNOVATION-1BIAL Foundatio

    Disrupted Spatial Organization of Cued Exogenous Attention Persists Into Adulthood in Developmental Dyslexia

    No full text
    Purpose: Abnormal exogenous attention orienting and diffused spatial distribution of attention have been associated with reading impairment in children with developmental dyslexia. However, studies in adults have failed to replicate such relationships. The goal of the present study was to address this issue by assessing exogenous visual attention and its peripheral spatial distribution in adults with developmental dyslexia. Methods: We measured response times, accuracy and eye movements of 18 dyslexics and 19 typical readers in a cued discrimination paradigm, in which stimuli were presented at different peripheral eccentricities. Results: Results showed that adults with developmental dyslexia were slower that controls in using their mechanisms of exogenous attention orienting. Moreover, we found that while controls became slower with the increase of eccentricity, dyslexics showed an abnormal inflection at 10° as well as similar response times at the most distant eccentricities. Finally, dyslexics show attentional facilitation deficits above 12° of eccentricity, suggesting an attentional engagement deficit at far periphery. Conclusion: Taken together, our findings indicate that, in dyslexia, the temporal deficits in orientation of attention and its abnormal peripheral spatial distribution are not restricted to childhood and persist into adulthood. Our results are, therefore, consistent with the hypothesis that the neural network underlying selective spatial attention is disrupted in dyslexia

    The role of the basal ganglia in implicit contextual learning: a study of Parkinson's disease

    No full text
    Implicit contextual learning refers to the ability to memorize contextual information from our environment. This contextual information can then be used to guide our attention to a specific location. Although the medial temporal lobe is important for this type of learning, the basal ganglia might also be involved considering its role in many implicit learning processes. In order to understand the role of the basal ganglia in this top-down process, a group of non-demented early-stage Parkinson's patients were tested with a contextual cueing task. In this visual search task, subjects have to quickly locate a target among a number of distractors. To test implicit contextual learning, some of the configurations are repeated during the experiment, resulting in faster responses. A significant interaction effect was found between Group and Configuration, indicating that the control subjects responded faster when the spatial context was repeated, whereas Parkinson's patients failed to do so. These results, showing that the contextual cueing effect was significantly different for the patients than for the controls, suggest an important role for the basal ganglia in implicit contextual learning, thus extending previous findings of medial temporal lobe involvement. The basal ganglia are therefore not only involved in implicit motor learning, but may also have a role in purely visual implicit learning

    A direct comparison of local-global integration in autism and other developmental disorders: implications for the central coherence hypothesis.

    Get PDF
    The weak central coherence hypothesis represents one of the current explanatory models in Autism Spectrum Disorders (ASD). Several experimental paradigms based on hierarchical figures have been used to test this controversial account. We addressed this hypothesis by testing central coherence in ASD (n = 19 with intellectual disability and n = 20 without intellectual disability), Williams syndrome (WS, n = 18), matched controls with intellectual disability (n = 20) and chronological age-matched controls (n = 20). We predicted that central coherence should be most impaired in ASD for the weak central coherence account to hold true. An alternative account includes dorsal stream dysfunction which dominates in WS. Central coherence was first measured by requiring subjects to perform local/global preference judgments using hierarchical figures under 6 different experimental settings (memory and perception tasks with 3 distinct geometries with and without local/global manipulations). We replicated these experiments under 4 additional conditions (memory/perception*local/global) in which subjects reported the correct local or global configurations. Finally, we used a visuoconstructive task to measure local/global perceptual interference. WS participants were the most impaired in central coherence whereas ASD participants showed a pattern of coherence loss found in other studies only in four task conditions favoring local analysis but it tended to disappear when matching for intellectual disability. We conclude that abnormal central coherence does not provide a comprehensive explanation of ASD deficits and is more prominent in populations, namely WS, characterized by strongly impaired dorsal stream functioning and other phenotypic traits that contrast with the autistic phenotype. Taken together these findings suggest that other mechanisms such as dorsal stream deficits (largest in WS) may underlie impaired central coherence

    Scanning Patterns of Faces do not Explain Impaired Emotion Recognition in Huntington Disease: Evidence for a High Level Mechanism

    Get PDF
    In the current study, we aimed to investigate the emotion recognition impairment in Huntington's disease (HD) patients and define whether this deficit is caused by impaired scanning patterns of the face. To achieve this goal, we recorded eye movements during a two-alternative forced-choice emotion recognition task. HD patients in pre-symptomatic (n = 16) and symptomatic (n = 9) disease stages were tested and their performance was compared to a control group (n = 22). In our emotion recognition task, participants had to indicate whether a face reflected one of six basic emotions. In addition, and in order to define whether emotion recognition was altered when the participants were forced to look at a specific component of the face, we used a second task where only limited facial information was provided (eyes/mouth in partially masked faces). Behavioral results showed no differences in the ability to recognize emotions between pre-symptomatic gene carriers and controls. However, an emotion recognition deficit was found for all six basic emotion categories in early stage HD. Analysis of eye movement patterns showed that patient and controls used similar scanning strategies. Patterns of deficits were similar regardless of whether parts of the faces were masked or not, thereby confirming that selective attention to particular face parts is not underlying the deficits. These results suggest that the emotion recognition deficits in symptomatic HD patients cannot be explained by impaired scanning patterns of faces. Furthermore, no selective deficit for recognition of disgust was found in pre-symptomatic HD patients
    corecore