95 research outputs found
Equilibrium Sampling From Nonequilibrium Dynamics
We present some applications of an Interacting Particle System (IPS)
methodology to the field of Molecular Dynamics. This IPS method allows several
simulations of a switched random process to keep closer to equilibrium at each
time, thanks to a selection mechanism based on the relative virtual work
induced on the system. It is therefore an efficient improvement of usual
non-equilibrium simulations, which can be used to compute canonical averages,
free energy differences, and typical transitions paths
Acquired resistance of human T cells to sulfasalazine: stability of the resistant phenotype and sensitivity to non-related DMARDs.
2.5 weeks) resumption of SSZ resistance and ABCG2 expression as in the original CEM/SSZ cells. CEM/SSZ cells displayed diminished sensitivity to the DMARDs leflunomide (5.1-fold) and methotrexate (1.8-fold), were moderately more sensitive (1.6-2.0 fold) to cyclosporin A and chloroquine, and markedly more sensitive (13-fold) to the glucocorticoid dexamethasone as compared with parental CEM cells. CONCLUSION: The drug efflux pump ABCG2 has a major role in conferring resistance to SSZ. The collateral sensitivity of SSZ resistant cells for some other (non-related) DMARDs may provide a further rationale for sequential mono- or combination therapies with distinct DMARDs upon decreased efficacy of SSZ
Effect of symmetry breaking perturbations in the one-dimensional SU(4) spin-orbital model
We study the effect of symmetry breaking perturbations in the one-dimensional
SU(4) spin-orbital model. We allow the exchange in spin () and orbital
() channel to be different and thus reduce the symmetry to SU(2)
SU(2). A magnetic field along the direction is also applied. Using
the formalism developped by Azaria et al we extend their analysis of the
isotropic , h=0 case and obtain the low-energy effective theory near
the SU(4) point in the asymmetric case. An accurate analysis of the
renormalization group flow is presented with a particular emphasis on the
effect of the anisotropy. In zero magnetic field, we retrieve the same
qualitative low-energy physics than in the isotropic case. In particular, the
massless behavior found on the line extends in a large
anisotropic region. We discover though that the anisotropy plays its trick in
allowing non trivial scaling behaviors of the physical quantities. When a
magnetic field is present the effect of the anisotropy is striking. In addition
to the usual commensurate-incommensurate phase transition that occurs in the
spin sector of the theory, we find that the field may induce a second
transition of the KT type in the remaining degrees of freedom to which it does
not couple directly. In this sector, we find that the effective theory is that
of an SO(4) Gross-Neveu model with an h-dependent coupling that may change its
sign as h varies.Comment: 14 pages, 5 Figs, added referenc
Effects of a magnetic field on the one-dimensional spin-orbital model
We study the effects of a uniform magnetic field on the one-dimensional
spin-orbital model in terms of effective field theories. Two regions are
examined: one around the SU(4) point (J=K/4) and the other with K<<J. We found
that when , the spin and orbital correlation functions exhibit
power-law decay with nonuniversal exponents. In the region with J>K/4, the
excitation spectrum has a gap. When the magnetic field is beyond some critical
value, a quantum phase transition occurs. However, the correlation functions
around the SU(4) point and the region with K<<J exhibit distinct behavior. This
results from different structures of excitation spectra in both regime.Comment: 22 pages, no figure
Phase diagram of a 1 dimensional spin-orbital model
We study a 1 dimensional spin-orbital model using both analytical and
numerical methods. Renormalization group calculations are performed in the
vicinity of a special integrable point in the phase diagram with SU(4)
symmetry. These indicate the existence of a gapless phase in an extended region
of the phase diagram, missed in previous studies. This phase is SU(4) invariant
at low energies apart from the presence of different velocities for spin and
orbital degrees of freedom. The phase transition into a gapped dimerized phase
is in a generalized Kosterlitz-Thouless universality class. The phase diagram
of this model is sketched using the density matrix renormalization group
technique.Comment: 11 pages, 5 figures, new references adde
Structure and Function of ABCG2-Rich Extracellular Vesicles Mediating Multidrug Resistance
Multidrug resistance (MDR) is a major impediment to curative cancer chemotherapy. The ATP-Binding Cassette transporters ABCG2, ABCB1 and ABCC2 form a unique defense network against multiple structurally and functionally distinct chemotherapeutics, thereby resulting in MDR. Thus, deciphering novel mechanisms of MDR and their overcoming is a major goal of cancer research. Recently we have shown that overexpression of ABCG2 in the membrane of novel extracellular vesicles (EVs) in breast cancer cells results in mitoxantrone resistance due to its dramatic sequestration in EVs. However, nothing is known about EVs structure, biogenesis and their ability to concentrate multiple antitumor agents. To this end, we here found that EVs are structural and functional homologues of bile canaliculi, are apically localized, sealed structures reinforced by an actin-based cytoskeleton and secluded from the extracellular milieu by the tight junction proteins occludin and ZO-1. Apart from ABCG2, ABCB1 and ABCC2 were also selectively targeted to the membrane of EVs. Moreover, Ezrin-Radixin-Moesin protein complex selectively localized to the border of the EVs membrane, suggesting a key role for the tethering of MDR pumps to the actin cytoskeleton. The ability of EVs to concentrate and sequester different antitumor drugs was also explored. Taking advantage of the endogenous fluorescence of anticancer drugs, we found that EVs-forming breast cancer cells display high level resistance to topotecan, imidazoacridinones and methotrexate via efficient intravesicular drug concentration hence sequestering them away from their cellular targets. Thus, we identified a new modality of anticancer drug compartmentalization and resistance in which multiple chemotherapeutics are actively pumped from the cytoplasm and highly concentrated within the lumen of EVs via a network of MDR transporters differentially targeted to the EVs membrane. We propose a composite model for the structure and function of MDR pump-rich EVs in cancer cells and their ability to confer multiple anticancer drug resistance
Overcoming Multidrug Resistance via Photodestruction of ABCG2-Rich Extracellular Vesicles Sequestering Photosensitive Chemotherapeutics
Multidrug resistance (MDR) remains a dominant impediment to curative cancer chemotherapy. Efflux transporters of the ATP-binding cassette (ABC) superfamily including ABCG2, ABCB1 and ABCC1 mediate MDR to multiple structurally and functionally distinct antitumor agents. Recently we identified a novel mechanism of MDR in which ABCG2-rich extracellular vesicles (EVs) form in between attached neighbor breast cancer cells and highly concentrate various chemotherapeutics in an ABCG2-dependent manner, thereby sequestering them away from their intracellular targets. Hence, development of novel strategies to overcome MDR modalities is a major goal of cancer research. Towards this end, we here developed a novel approach to selectively target and kill MDR cancer cells. We show that illumination of EVs that accumulated photosensitive cytotoxic drugs including imidazoacridinones (IAs) and topotecan resulted in intravesicular formation of reactive oxygen species (ROS) and severe damage to the EVs membrane that is shared by EVs-forming cells, thereby leading to tumor cell lysis and the overcoming of MDR. Furthermore, consistent with the weak base nature of IAs, MDR cells that are devoid of EVs but contained an increased number of lysosomes, highly accumulated IAs in lysosomes and upon photosensitization were efficiently killed via ROS-dependent lysosomal rupture. Combining targeted lysis of IAs-loaded EVs and lysosomes elicited a synergistic cytotoxic effect resulting in MDR reversal. In contrast, topotecan, a bona fide transport substrate of ABCG2, accumulated exclusively in EVs of MDR cells but was neither detected in lysosomes of normal breast epithelial cells nor in non-MDR breast cancer cells. This exclusive accumulation in EVs enhanced the selectivity of the cytotoxic effect exerted by photodynamic therapy to MDR cells without harming normal cells. Moreover, lysosomal alkalinization with bafilomycin A1 abrogated lysosomal accumulation of IAs, consequently preventing lysosomal photodestruction of normal breast epithelial cells. Thus, MDR modalities including ABCG2-dependent drug sequestration within EVs can be rationally converted to a pharmacologically lethal Trojan horse to selectively eradicate MDR cancer cells
Impact of hypoxia on chemoresistance of mesothelioma mediated by the proton-coupled folate transporter, and preclinical activity of new anti-LDH-A compounds
Background: Expression of proton-coupled folate transporter (PCFT) is associated with survival of mesothelioma patients treated with pemetrexed, and is reduced by hypoxia, prompting studies to elucidate their correlation. Methods: Modulation of glycolytic gene expression was evaluated by PCR arrays in tumour cells and primary cultures growing under hypoxia, in spheroids and after PCFT silencing. Inhibitors of lactate dehydrogenase (LDH-A) were tested in vitro and in vivo. LDH-A expression was determined in tissue microarrays of radically resected malignant pleural mesothelioma (MPM, N = 33) and diffuse peritoneal mesothelioma (DMPM, N = 56) patients. Results: Overexpression of hypoxia marker CAIX was associated with low PCFT expression and decreased MPM cell growth inhibition by pemetrexed. Through integration of PCR arrays in hypoxic cells and spheroids and following PCFT silencing, we identified the upregulation of LDH-A, which correlated with shorter survival of MPM and DMPM patients. Novel LDH-A inhibitors enhanced spheroid disintegration and displayed synergistic effects with pemetrexed in MPM and gemcitabine in DMPM cells. Studies with bioluminescent hypoxic orthotopic and subcutaneous DMPM athymic-mice models revealed the marked antitumour activity of the LDH-A inhibitor NHI-Glc-2, alone or combined with gemcitabine. Conclusions: This study provides novel insights into hypoxia/PCFT-dependent chemoresistance, unravelling the potential prognostic value of LDH-A, and demonstrating the preclinical activity of LDH-A inhibitors
Drug transporters: recent advances concerning BCRP and tyrosine kinase inhibitors
Multidrug resistance is often associated with the (over)expression of drug efflux transporters of the ATP-binding cassette (ABC) protein family. This minireview discusses the role of one selected ABC-transporter family member, the breast cancer resistance protein (BCRP/ABCG2), in the (pre)clinical efficacy of novel experimental anticancer drugs, in particular tyrosine kinase inhibitors
- β¦