1,907 research outputs found
Stoner gap in the superconducting ferromagnet UGe2
We report the temperature () dependence of ferromagnetic Bragg peak
intensities and dc magnetization of the superconducting ferromagnet UGe2 under
pressure (). We have found that the low- behavior of the uniform
magnetization can be explained by a conventional Stoner model. A functional
analysis of the data produces the following results: The ferromagnetic state
below a critical pressure can be understood as the perfectly polarized state,
in which heavy quasiparticles occupy only majority spin bands. A Stoner gap
decreases monotonically with increasing pressure and increases
linearly with magnetic field. We show that the present analysis based on the
Stoner model is justified by a consistency check, i.e., comparison of density
of states at the Fermi energy deduced from the analysis with observed
electronic specific heat coeffieients. We also argue the influence of the
ferromagnetism on the superconductivity.Comment: 5 pages, 4 figures. to be published in Phys. Rev.
Kagom\'{e} ice state in the dipolar spin ice Dy_{2}Ti_{2}O_{7}
We have investigated the kagom\'{e} ice behavior of the dipolar spin-ice
compound Dy_{2}Ti_{2}O_{7} in magnetic field along a [111] direction using
neutron scattering and Monte Carlo simulations. The spin correlations show that
the kagom\'{e} ice behavior predicted for the nearest-neighbor (NN) interacting
model, where the field induces dimensional reduction and spins are frustrated
in each two-dimensional kagom\'{e} lattice, occurs in the dipole interacting
system. The spins freeze at low temperatures within the macroscopically
degenerate ground states of the NN model.Comment: 5 pages, 3 figures, submitted to PR
Bias dependence of tunneling-electron-induced molecular fluorescence from porphyrin films on noble-metal substrates
We investigated scanning tunneling microscope (STM)-excited luminescence from porphyrin (PhTPP and H2TPP) thin films on metal substrate (Au and Ag) under ambient conditions. Molecular fluorescence similar to the corresponding photoluminescence was observed from PhTPP/Au and H2TPP/Ag at both STM bias polarities. We found that at the same experimental condition and parameters, the STM-induced luminescence intensities of maxima peak are similar for PhTPP and H2TPP but weaker by a factor of about 4 than that for H2TBPP which we studied previously, probably due to fluorescence quenching by aggregation. The polarity dependence and the bias voltage dependence of the fluorescence intensity for the PhTPP/Au were similar to that for the respective pristine metal. These facts support our proposal that intense molecular fluorescence from porphyrin film on the noble metals is a result of the enhancement of molecular excitation by substrate surface plasmons
Magnetic structure, phase diagram, and a new type of spin-flop transition dominated by higher order interaction in a localized 5f system U3Pd20Si6
The magnetic structure of the localized-5f uranium intermetallic compound U3Pd20Si6 has been determined by means of a neutron diffraction experiment. Our data demonstrate that this compound has a collinear coupling of the sublattice ordering of the uranium spins on the 4a and 8c sites. We conclude that higher-order exchange and/or quadrupole interactions are necessary to stabilize this unique collinear structure. We discovered a new type of spin-flop transition against the uniaxial anisotropy induced by this collinear coupling
Anomalous phase of MnP at very low field
Manganese phosphide MnP has been investigated for decades because of its rich
magnetic phase diagram. It is well known that the MnP exhibits the
ferromagnetic phase transition at \Tc=292 K and the helical magnetic phase
below \TN=47 K at zero field. Recently, a novel magnetic phase transition was
observed at K when the magnetic field is lower than 5 Oe. However,
the nature of the new phase has not been illuminated yet. In order to reveal
it, we performed the AC and the DC magnetization measurements for a single
crystal MnP at very low field. A divergent behavior of the real and the
imaginary part of the AC susceptibility and a sharp increase of the DC
magnetization was observed at , indicating the magnetic phase transition
at . Furthermore a peculiar temperature hysteresis was observed: namely,
the magnetization depends on whether cooling sample to the temperature lower
than \TN or not before the measurements. This hysteresis phenomenon suggests
the complicated nature of the new phase and a strong relation between the
magnetic state of the new phase and the helical structure.Comment: 4 pages, 2 figure
STM fluorescence of porphyrin enhanced by a strong plasmonic field and its nanoscale confinement in an STM cavity
We have investigated scanning tunneling microscope-induced luminescence STML from porphyrin molecules by varying the tip PtIr, Ag, and Au/substrate Pt, Ag, Au, and indium tin oxide combinations. Strong molecular fluorescence by highest-occupied molecular orbital and lowest-unoccupied molecular orbital transition comparable to plasmon-mediated light is emitted only when both the substrate and the tip are metals but not in other cases. Along with calculations of relative electromagnetic-field powers in the tip-substrate gaps, the enhancement of STML from molecules can be interpreted in terms of the strong plasmon field and its confinement in an STM cavity. We also find rather strong energy-forbidden fluorescence of porphyrin in an Au-tip/porphyrin/Au cavity that occurs under the extremely strong field in the plasmonic nanocavity
Recent results of a seismically isolated optical table prototype designed for advanced LIGO
The Horizontal Access Module Seismic Attenuation System (HAM-SAS) is a mechanical device expressly designed to isolate a multipurpose optical table and fit in the tight space of the LIGO HAM Ultra-High-Vacuum chamber. Seismic attenuation in the detectors' sensitivity frequency band is achieved with state of the art passive mechanical attenuators. These devices should provide an attenuation factor of about 70dB above 10Hz at the suspension point of the Advanced LIGO triple pendulum suspension. Automatic control techniques are used to position the optical table and damp rigid body modes. Here, we report the main results obtained from the full scale prototype installed at the MIT LIGO Advanced System Test Interferometer (LASTI) facility. Seismic attenuation performance, control strategies, improvements and limitations are also discussed
Atomic Carbon and CO Isotope Emission in the Vicinity of DR15
We present observations of the 3P1-3P0 fine structure transition of atomic
carbon [CI], the J=3-2 transition of CO, as well as of the J=1-0 transitions of
13CO and C18O toward DR15, an HII region associated with two mid-infrared dark
clouds (IRDCs). The 13CO and C18O J=1-0 emissions closely follow the dark
patches seen in optical wavelength, showing two self-gravitating molecular
cores with masses of 2000 Msun and 900 Msun, respectively, at the positions of
the catalogued IRDCs.
Our data show a rough spatial correlation between [CI] and 13CO J=1-0. Bright
[CI] emission occurs in relatively cold gas behind the molecular cores, neither
in highly excited gas traced by CO J=3-2 emission nor in HII region/molecular
cloud interface. These results are inconsistent with those predicted by
standard photodissociation region (PDR) models, suggesting an origin for
interstellar atomic carbon unrelated to photodissociation processes.Comment: 11 pages Latex, 6 figures, Accepted for publication in The
Astrophysical Journa
- …