5 research outputs found

    Supervised saliency map driven segmentation of lesions in dermoscopic images

    Get PDF
    Lesion segmentation is the first step in most automatic melanoma recognition systems. Deficiencies and difficulties in dermoscopic images such as color inconstancy, hair occlusion, dark corners, and color charts make lesion segmentation an intricate task. In order to detect the lesion in the presence of these problems, we propose a supervised saliency detection method tailored for dermoscopic images based on the discriminative regional feature integration (DRFI). A DRFI method incorporates multilevel segmentation, regional contrast, property, background descriptors, and a random forest regressor to create saliency scores for each region in the image. In our improved saliency detection method, mDRFI, we have added some new features to regional property descriptors. Also, in order to achieve more robust regional background descriptors, a thresholding algorithm is proposed to obtain a new pseudo-background region. Findings reveal that mDRFI is superior to DRFI in detecting the lesion as the salient object in dermoscopic images. The proposed overall lesion segmentation framework uses detected saliency map to construct an initial mask of the lesion through thresholding and postprocessing operations. The initial mask is then evolving in a level set framework to fit better on the lesion's boundaries. The results of evaluation tests on three public datasets show that our proposed segmentation method outperforms the other conventional state-of-the-art segmentation algorithms and its performance is comparable with most recent approaches that are based on deep convolutional neural networks

    Segmentation of Lesions in Dermoscopy Images Using Saliency Map And Contour Propagation

    Get PDF
    Melanoma is one of the most dangerous types of skin cancer and causes thousands of deaths worldwide each year. Recently dermoscopic imaging systems have been widely used as a diagnostic tool for melanoma detection. The first step in the automatic analysis of dermoscopy images is the lesion segmentation. In this article, a novel method for skin lesion segmentation that could be applied to a variety of images with different properties and deficiencies is proposed. After a multi-step preprocessing phase (hair removal and illumination correction), a supervised saliency map construction method is used to obtain an initial guess of lesion location. The construction of the saliency map is based on a random forest regressor that takes a vector of regional image features and return a saliency score based on them. This regressor is trained in a multi-level manner based on 2000 training data provided in ISIC2017 melanoma recognition challenge. In addition to obtaining an initial contour of lesion, the output saliency map can be used as a speed function alongside with image gradient to derive the initial contour toward the lesion boundary using a propagation model. The proposed algorithm has been tested on the ISIC2017 training, validation and test datasets, and gained high values for evaluation metrics

    The effects of radiofrequency radiation on mice fetus weight, length and tissues

    Get PDF
    The public concern of harmful effects of radiofrequency radiation exposure, especially with rapid increase in the use of wireless and telecommunication devices, is increasing. Some studies show fetal and developmental abnormalities as the result of radiofrequency radiation exposure. We aimed to investigate possible teratogenic effects of radiofrequency in 915 MHz on mice fetus and protective role of vitamin C. 21 pregnant mice were divided into 3 groups. Control group was in normal condition without any stressor agent. Exposure group was exposed to 915 MHz RFR (8 h/day for 10 days) and 0.045 µw/cm2 power density. The exposure plus vitamin C group received 200 mg/kg vitamin C by gavage and was exposed to 915 MHz RFR (8 h/day for 10 days) and 0.045 µw/cm2 power density. The fetus weight, C-R length were measured by digital balance and caliper. Tissues were assessed after staining with H & E. Our results showed significant increase in fetus weight and C-R length and also enlarged liver, tail deformation in mice fetus in exposure group. Although usage of vitamin C caused significant decrease in mentioned parameters. The outcome of this study confirms the effects of radiofrequency radiation on growth parameters such as body weight, length and some tissues in mice fetuses and protective effect of vitamin C. However more studies on non-ionization radiation in different frequencies and severity, during pregnancy are needed to clarify the exact mechanisms of these changes and better protection. © 201

    缝隙连接在癫痫中的作用

    No full text
    corecore