4 research outputs found

    Allochthonous and Autochthonous Halothermotolerant Bioanodes From Hypersaline Sediment and Textile Wastewater: A Promising Microbial Electrochemical Process for Energy Recovery Coupled With Real Textile Wastewater Treatment

    Get PDF
    The textile and clothing industry is the first manufacture sector in Tunisia in terms of employment and number of enterprises. It generates large volumes of textile dyeing wastewater (TDWW) containing high concentrations of saline, alkaline, and recalcitrant pollutants that could fuel tenacious and resilient electrochemically active microorganisms in bioanodes of bioelectrochemical systems. In this study, a designed hybrid bacterial halothermotolerant bioanode incorporating indigenous and exogenous bacteria from both hypersaline sediment of Chott El Djerid (HSCE) and TDWW is proposed for simultaneous treatment of real TDWW and anodic current generation under high salinity. For the proposed halothermotolerant bioanodes, electrical current production, chemical oxygen demand (COD) removal efficiency, and bacterial community dynamics were monitored. All the experiments of halothermotolerant bioanode formation have been conducted on 6 cm2 carbon felt electrodes polarized at −0.1 V/SCE and inoculated with 80% of TDWW and 20% of HSCE for 17 days at 45°C. A reproducible current production of about 12.5 ± 0.2 A/m2 and a total of 91 ± 3% of COD removal efficiency were experimentally validated. Metagenomic analysis demonstrated significant differences in bacterial diversity mainly at species level between anodic biofilms incorporating allochthonous and autochthonous bacteria and anodic biofilm containing only autochthonous bacteria as a control. Therefore, we concluded that these results provide for the first time a new noteworthy alternative for achieving treatment and recover energy, in the form of a high electric current, from real saline TDWW

    Understanding the cumulative effects of salinity, temperature and inoculation size for the design of optimal halothermotolerant bioanodes from hypersaline sediments

    Get PDF
    The main objective of this study was to understand the interaction between salinity, temperature and inoculum size and how it could lead to the formation of efficient halothermotolerant bioanodes from the Hypersaline Sediment of Chott El Djerid (HSCE). Sixteen experiments on bioanode formation were designed using a Box-Behnken matrix and response surface methodology to understand synchronous interactions. All bioanode formations were conducted on 6 cm2 carbon felt electrodes polarized at −0.1 V/SCE and fed with lactate (5 g/L) at pH 7.0. Optimum levels for salinity, temperature and inoculum size were predicted by NemrodW software as 165 g/L, 45 °C and 20%, respectively, under which conditions maximum current production of 6.98 ± 0.06 A/m2 was experimentally validated. Metagenomic analysis of selected biofilms indicated a relative abundance of the two phyla Proteobacteria (from 85.96 to 89.47%) and Firmicutes (from 61.90 to 68.27%). At species level, enrichment of Psychrobacter aquaticus, Halanaerobium praevalens, Psychrobacter alimentaris, and Marinobacter hydrocarbonoclasticus on carbon-based electrodes was correlated with high current production, high salinity and high temperature. Members of the halothermophilic bacteria pool from HSCE, individually or in consortia, are candidates for designing halothermotolerant bioanodes applicable in the bioelectrochemical treatment of industrial wastewater at high salinity and temperature

    Understanding the cumulative effects of salinity, temperature and inoculation size for the design of optimal halothermotolerant bioanodes from hypersaline sediments

    Get PDF
    The main objective of this study was to understand the interaction between salinity, temperature and inoculum size and how it could lead to the formation of efficient halothermotolerant bioanodes from the Hypersaline Sediment of Chott El Djerid (HSCE). Sixteen experiments on bioanode formation were designed using a Box-Behnken matrix and response surface methodology to understand synchronous interactions. All bioanode formations were conducted on 6 cm2 carbon felt electrodes polarized at −0.1 V/SCE and fed with lactate (5 g/L) at pH 7.0. Optimum levels for salinity, temperature and inoculum size were predicted by NemrodW software as 165 g/L, 45 °C and 20%, respectively, under which conditions maximum current production of 6.98 ± 0.06 A/m2 was experimentally validated. Metagenomic analysis of selected biofilms indicated a relative abundance of the two phyla Proteobacteria (from 85.96 to 89.47%) and Firmicutes (from 61.90 to 68.27%). At species level, enrichment of Psychrobacter aquaticus, Halanaerobium praevalens, Psychrobacter alimentaris, and Marinobacter hydrocarbonoclasticus on carbon-based electrodes was correlated with high current production, high salinity and high temperature. Members of the halothermophilic bacteria pool from HSCE, individually or in consortia, are candidates for designing halothermotolerant bioanodes applicable in the bioelectrochemical treatment of industrial wastewater at high salinity and temperature

    Magnetite nanoparticles enhance the bioelectrochemical treatment of municipal sewage by facilitating the syntrophic oxidation of volatile fatty acids

    No full text
    BACKGROUND Microbial electrochemical technologies (METs) represent a novel platform to harvest the energy trapped in municipal wastewater. At the anode of METs, electro‐active bacteria (EAB) anaerobically oxidize wastewater constituents using the electrode as the terminal electron acceptor and, by so doing, generate an electric current. To convert complex wastewater constituents into electricity, EAB must not only establish syntrophic relationships with other members of the microbial community, but also compete with methanogens for consumption of hydrogen and acetate. Here, we examined the addition of magnetite nanoparticles (NPs) (250 mg Fe L−1) as a novel strategy to manipulate such metabolic interactions and in turn maximize the efficiency of wastewater treatment and the yield of electric current generation. RESULTS Batch experiments carried out either in the presence of a mixture of volatile fatty acids or of a synthetic sewage demonstrated that magnetite addition accelerate the rate of electrogenic oxidation of specific compounds, particularly propionate (up to 120%), an intermediate which frequently accumulates during anaerobic treatment processes, while correspondingly enhancing electric current generation (up to 90%), and diminishing the rate of competing methane generation (up to 50%). Notably, the composition of the microbial community was not substantially affected by the presence of magnetite nanoparticles, possibly suggesting that these latter facilitated extracellular electron transfer mechanisms (among microbes and with the electrode), rather than enriching conditions for specific microorganisms. CONCLUSION The addition of magnetite NPs may represent a practical strategy to kick‐start a bioelectrochemical system designed for wastewater treatment and improve the effectiveness of electrogenic substrate oxidation processes. © 2019 Society of Chemical Industr
    corecore