38 research outputs found

    CD36 defines primitive chronic myeloid leukemia cells less responsive to imatinib but vulnerable to antibody-based therapeutic targeting

    Get PDF
    Tyrosine kinase inhibitors (TKIs) are highly effective for the treatment of chronic myeloid leukemia (CML), but very few patients are cured. The major drawbacks regarding TKIs are their low efficacy in eradicating the leukemic stem cells responsible for disease maintenance and relapse upon drug cessation. Herein, we performed ribonucleic acid sequencing of flow-sorted primitive (CD34(+) CD38(low)) and progenitor (CD34(+) CD38(+)) chronic phase CML cells, and identified transcriptional upregulation of 32 cell surface molecules relative to corresponding normal bone marrow cells. Focusing on novel markers with increased expression on primitive CML cells, we confirmed upregulation of the scavenger receptor CD36 and the leptin receptor by flow cytometry. We also delineate a subpopulation of primitive CML cells expressing CD36 that is less sensitive to imatinib treatment. Using CD36 targeting anti-bodies, we show that the CD36 positive cells can be targeted and killed by antibody-dependent cellular cytotoxicity. In summary, CD36 defines a subpopulation of primitive CML cells with decreased imatinib sensitivity that can be effectively targeted and killed using an anti-CD36 anti-body.Peer reviewe

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Towards Gene Therapy of Osteopetrosis.

    No full text
    The goal in this thesis is development of gene therapy for malignant infantile osteopetrosis (IMO), a rare but severe genetic bone disease. The concept of osteopetrosis implies dysfunction or lack of osteoclasts, the bone resorbing cells in our body, resulting in failure of normal bone breakdown. Although involved in bone remodeling, osteoclasts are of hematopoietic origin and may potentially be targeted by genetic modification of hematopoietic stem cells (HSCs). Recently, clinical progress within the field of gene therapy has been achieved for other monogenic diseases affecting the hematopoietic system thereby providing hope for future clinical application also for osteopetrosis. We have been working with a mouse model of IMO called the oc/oc mouse and have been able to correct the otherwise lethal osteopetrotic phenotype in theses animals by transplantation of normal bone marrow. In addition, we established optimal pre-transplantation irradiation dose, cell dose and onset of treatment. Further studies in the oc/oc mouse model involved gene therapy where oc/oc fetal liver derived HSCs were transduced with a retroviral vector and subsequently transplanted into oc/oc mice. In vitro studies of osteoclast function revealed a partial restoration of bone resorbing activity. The osteopetrotic phenotype was reversed and this resulted in long-term survival of transplanted mice. The present findings provide a first and significant step towards the development of gene therapy in patients with malignant osteopetrosis. To prepare for human gene therapy, we also investigated the ability of lentiviral vectors, produced by stable packaging cell lines, to transduce human CD34+ SCID repopulating cells

    Prospects for gene therapy of osteopetrosis.

    No full text
    Dysfunction in or lack of osteoclasts result in osteopetrosis, a group of rare but often severe, genetic disorders characterized by an increase in bone mass, skeletal malformations and bone marrow failure that may be fatal. Several of the underlying defects have lately been characterized in humans and in animal disease models. In humans, these defects often involve mutations in genes expressing proteins involved in the acidification of the osteoclast sub-cellular compartment, a process necessary for proper bone resorption. So far, the only cure for children with severe osteopetrosis is allogeneic hematopoietic stem cell transplantation (SCT). However, the characterization of the genetic defects opens up the possibility for gene replacement therapy as an alternative to SCT. Recently, gene therapy targeting hematopoietic stem cells (HSC) in a mouse model of infantile malignant osteopetrosis was shown to correct many aspects of the disease. Here we review important aspects of this group of diseases and discuss the prospects for development of gene therapy of osteopetrosis

    Defining the hematopoietic stem cell niche : The chicken and the egg conundrum

    No full text
    Understanding the in vivo regulation of hematopoietic stem cells (HSCs) will be critical to identifying key factors involved in the regulation of HSC self‐renewal and differentiation. The niche (microenvironment) in which HSCs reside has recently regained attention accompanied by a dramatic increase in the understanding of the cellular constituents of the bone marrow HSC niche. The use of sophisticated genetic models allowing modulation of specific lineages has demonstrated roles for mesenchymal‐derived elements such as osteoblasts and adipocytes, vasculature, nerves, and a range of hematopoietic progeny of the HSC as being participants in the regulation of the bone marrow microenvironment. Whilst providing significant insight into the cellular composition of the niche, is it possible to manipulate any given cell lineage in vivo without impacting, knowingly or unknowingly, on those that remain? J. Cell. Biochem. 112: 1486–1490, 2011. © 2011 Wiley‐Liss, Inc

    Low-dose busulphan conditioning and neonatal stem cell transplantation preserves vision and restores hematopoiesis in severe murine osteopetrosis.

    No full text
    OBJECTIVE: Infantile malignant osteopetrosis is a fatal disease caused by lack of functional osteoclasts. In most of patients, TCIRG1, encoding a subunit of a proton pump essential for bone resorption, is mutated. Osteopetrosis leads to bone marrow failure and blindness due to optic nerve compression. Oc/oc mice have a deletion in Tcirg1 and die around 3 to 4 weeks, but can be rescued by neonatal stem cell transplantation (SCT) after irradiation conditioning. However, as irradiation of neonatal mice results in retinal degeneration, we wanted to investigate whether conditioning with busulphan prior to SCT can lead to preservation of vision and reversal of osteopetrosis in the oc/oc mouse model. MATERIALS AND METHODS: Pregnant dams were conditioned with busulphan and their litters transplanted with 1 x 10(6) normal lineage-depleted bone marrow cells intravenously or intraperitoneally. Mice were followed in terms of survival and engraftment level, as well as with peripheral blood lineage analysis, bone and eye histopathology and a visual-tracking drum test to assess vision. RESULTS: Busulphan at 15 mg/kg was toxic to oc/oc mice. However, six of seven oc/oc mice conditioned with busulphan 7.5 mg/kg survived past the normal lifespan with 10% engraftment, correction of the skeletal phenotype, and normalization of peripheral blood lineages. Busulphan, in contrast to irradiation, did not have adverse effects on the retina as determined by histopathology, and 8 weeks after transplantation control and oc/oc mice retained their vision. CONCLUSION: Low-dose busulphan conditioning and neonatal SCT leads to prolonged survival of oc/oc mice, reverses osteopetrosis and prevents blindness even at low engraftment levels

    Transgenic expression of human cytokines in immunodeficient mice does not facilitate myeloid expansion of BCR-ABL1 transduced human cord blood cells

    No full text
    Several attempts have been made to model chronic myeloid leukemia (CML) in a xenograft setting but expansion of human myeloid cells in immunodeficient mice has proven difficult to achieve. Lack of cross-reacting cytokines in the microenvironment of the mice has been proposed as a potential reason. In this study we have used NOD/SCID IL2–receptor gamma deficient mice expressing human SCF, IL-3 and GM-CSF (NSGS mice), that should be superior in supporting human, and particularly, myeloid cell engraftment, to expand BCR-ABL1 expressing human cells in order to model CML. NSGS mice transplanted with BCR-ABL1 expressing cells became anemic and had to be sacrificed due to illness, however, this was not accompanied by an expansion of human myeloid cells but rather we observed a massive expansion of human T-cells and macrophages/histiocytes. Importantly, control human cells without BCR-ABL1 expression elicited a similar reaction, although with a slight delay of disease induction, suggesting that while BCR-ABL1 contributes to the inflammatory reaction, the presence of normal human hematopoietic cells is detrimental for NSGS mice
    corecore