3,785 research outputs found

    A Theory of Constitutional Norms

    Get PDF
    The political convulsions of the past decade have fueled acute interest in constitutional norms or “conventions.” Despite intense scholarly attention, existing accounts are incomplete and do not answer at least one or more of three major questions: (1) What must all constitutional norms do? (2) What makes them conventional? (3) And why are they constitutional? This Article advances an original theory of constitutional norms that answers these questions. First, it defines them and explains their general character: they are normative, contingent, and arbitrary practices that implement constitutional text and principle. Most scholars have foregone examining how norms are conventional or have relegated them to coordinating behavior, like rules requiring drivers to stick to one side of the road. By contrast, this Article argues that constitutional norms are constitutive conventions, which concretize values into practices; they are akin to conventions of etiquette that concretize concepts like “politeness.” Constitutional norms implement abstract principles, like the separation of powers, or indeterminate text, such as “advice and consent,” into specific behavior and action. By understanding constitutional norms as constitutive conventions, this Article explains norms’ salient features, basic functions, and relationship to the Constitution. Norms are normative because they command respect and allegiance; they are contingent because they depend on political, social, and intellectual conditions to emerge and endure; they are arbitrary because they represent one of many possible ways of realizing constitutional text and principle; and they are constitutional because the values they implement arise from the Constitution itself. This Article animates its theory through case studies of three constitutional norms: blue slips, the norm against court-packing, and executive noninterference in law enforcement. It concludes by questioning the use of historical practice in constitutional interpretation. It suggests that when scholars and judges draw on norms that are intrinsically contingent and arbitrary, they embed unstated normative assumptions about the past and how it should constrain the future

    Of matroid polytopes, chow rings and character polynomials

    Get PDF
    Matroids are combinatorial structures that capture various notions of independence. Recently there has been great interest in studying various matroid invariants. In this thesis, we study two such invariants: Volume of matroid base polytopes and the Tutte polynomial. We gave an approach to computing volume of matroid base polytopes using cyclic flats and apply it to the case of sparse paving matroids. For the Tutte polynomial, we recover (some of) its coefficients as degrees of certain forms in the Chow ring of underlying matroid. Lastly, we study the stability of characters of the symmetric group via character polynomials. We show a combinatorial identity in the ring of class functions that implies stability results for certain class of Kronecker coefficients

    Response Of The Dupi Tila Aquifer to intensive pumping in Dhaka, Bangladesh

    Get PDF
    This paper focuses on the water-quantity issues facing Dhaka because of the rapid exploitation of the Dupi Tila aquifer. Dhaka is one of the world’s largest groundwater-dependent cities, relying on water withdrawn from this underlying semiconfined sand aquifer. A meteoric rise in well construction in both the private and public sectors in recent years has produced an estimated 1,300 boreholes that tap the aquifer in urban and suburban parts of the city. Analysis of construction records for public-supply wells drilled between 1970 and 2000 shows that water levels are falling in several areas of the city despite apparently favorable recharge conditions . The productivity of boreholes as measured by specific capacity has also declined significantly. Even though the aquifer system is vital to the infrastructure of the city it remains a poorly quantified resource, and until this is resolved by investment in evaluation studies, attempts to efficiently manage the resource in a sustainable way will be frustrated

    POWER CONDITIONING UNIT FOR SMALL SCALE HYBRID PV-WIND GENERATION SYSTEM

    Get PDF
    Small-scale renewable energy systems are becoming increasingly popular due to soaring fuel prices and due to technological advancements which reduce the cost of manufacturing. Solar and wind energies, among other renewable energy sources, are the most available ones globally. The hybrid photovoltaic (PV) and wind power system has a higher capability to deliver continuous power with reduced energy storage requirements and therefore results in better utilization of power conversion and control equipment than either of the individual sources. Power conditioning units (p.c.u.) for such small-scale hybrid PV-wind generation systems have been proposed in this study. The system was connected to the grid, but it could also operate in standalone mode if the grid was unavailable. The system contains a local controller for every energy source and the grid inverter. Besides, it contains the supervisory controller. For the wind generator side, small-scale vertical axis wind turbines (VAWTs) are attractive due to their ability to capture wind from different directions without using a yaw. One difficulty with VAWTs is to prevent over-speeding and component over-loading at excessive wind velocities. The proposed local controller for the wind generator is based on the current and voltage measured on the dc side of the rectifier connected to the permanent magnet synchronous generator (PMSG). Maximum power point tracking (MPPT) control is provided in normal operation under the rated speed using a dc/dc boost converter. For high wind velocities, the suggested local controller controls the electric power in order to operate the turbine in the stall region. This high wind velocity control strategy attenuates the stress in the system while it smoothes the power generated. It is shown that the controller is able to stabilize the nonlinear system using an adaptive current feedback loop. Simulation and experimental results are presented. The PV generator side controller is designed to work in systems with multiple energy sources, such as those studied in this thesis. One of the most widely used methods to maximize the output PV power is the hill climbing technique. This study gives guidelines for designing both the perturbation magnitude and the time interval between consecutive perturbations for such a technique. These guidelines would improve the maximum power point tracking efficiency. According to these guidelines, a variable step MPPT algorithm with reduced power mode is designed and applied to the system. The algorithm is validated by simulation and experimental results. A single phase H-bridge inverter is proposed to supply the load and to connect the grid. Generally, a current controller injects active power with a controlled power factor and constant dc link voltage in the grid connected mode. However, in the standalone mode, it injects active power with constant ac output voltage and a power factor which depends on the load. The current controller for both modes is based on a newly developed peak current control (p.c.c.) with selective harmonic elimination. A design procedure has been proposed for the controller. Then, the method was demonstrated by simulation. The problem of the dc current injection to the grid has been investigated for such inverters. The causes of dc current injection are analyzed, and a measurement circuit is then proposed to control the inverter for dc current injection elimination. Characteristics of the proposed method are demonstrated, using simulation and experimental results. At the final stage of the study, a supervisory controller is demonstrated, which manages the different operating states of the system during starting, grid-connected and standalone modes. The operating states, designed for every mode, have been defined in such a hybrid model to allow stability and smooth transition between these states. The supervisory controller switches the system between the different modes and states according to the availability of the utility grid, renewable energy generators, the state of charge (SOC) of energy storage batteries, and the load. The p.c.u. including the supervisory controller has been verified in the different modes and states by simulation
    • …
    corecore