97 research outputs found

    ADAM33 gene silencing by promoter hypermethylation as a molecular marker in breast invasive lobular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>ADAM33 protein is a member of the family of transmembrane glycoproteins composed of multidomains. ADAM family members have different activities, such as proteolysis and adhesion, making them good candidates to mediate the extracellular matrix remodelling and changes in cellular adhesion that characterise certain pathologies and cancer development. It was reported that one family member, <it>ADAM23</it>, is down-regulated by promoter hypermethylation. This seems to correlate with tumour progression and metastasis in breast cancer. In this study, we explored the involvement of ADAM33, another ADAM family member, in breast cancer.</p> <p>Methods</p> <p>First, we analysed <it>ADAM33 </it>expression in breast tumour cell lines by RT-PCR and western blotting. We also used 5-aza-2'-deoxycytidine (5azadCR) treatment and DNA bisulphite sequencing to study the promoter methylation of ADAM33 in breast tumour cell lines. We evaluated ADAM33 methylation in primary tumour samples by methylation specific PCR (MSP). Finally, <it>ADAM33 </it>promoter hypermethylation was correlated with clinicopathological data using the chi-square test and Fisher's exact test.</p> <p>Results</p> <p>The expression analysis of <it>ADAM33 </it>in breast tumour cell lines by RT-PCR revealed gene silencing in 65% of tumour cell lines. The corresponding lack of ADAM33 protein was confirmed by western blotting. We also used 5-aza-2'-deoxycytidine (5-aza-dCR) demethylation and bisulphite sequencing methodologies to confirm that gene silencing is due to <it>ADAM33 </it>promoter hypermethylation. Using MSP, we detected <it>ADAM33 </it>promoter hypermethylation in 40% of primary breast tumour samples. The correlation between methylation pattern and patient's clinicopathological data was not significantly associated with histological grade; tumour stage (TNM); tumour size; ER, PR or ERBB2 status; lymph node status; metastasis or recurrence. Methylation frequency in invasive lobular carcinoma (ILC) was 76.2% compared with 25.5% in invasive ductal carcinoma (IDC), and this difference was statistically significant (p = 0.0002).</p> <p>Conclusion</p> <p><it>ADAM33 </it>gene silencing may be related to the discohesive histological appearance of ILCs. We suggest that <it>ADAM33 </it>promoter methylation may be a useful molecular marker for differentiating ILC and IDC.</p

    Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats

    Get PDF
    Background: Mast cells (MCs) are implicated in inflammation and tissue remodeling. Accumulation of lung MCs is described in pulmonary hypertension (PH); however, whether MC degranulation and c-kit, a tyrosine kinase receptor critically involved in MC biology, contribute to the pathogenesis and progression of PH has not been fully explored.Methods: Pulmonary MCs of idiopathic pulmonary arterial hypertension (IPAH) patients and monocrotaline-injected rats (MCT-rats) were examined by histochemistry and morphometry. Effects of the specific c-kit inhibitor PLX and MC stabilizer cromolyn sodium salt (CSS) were investigated in MCT-rats both by the preventive and therapeutic approaches. Hemodynamic and right ventricular hypertrophy measurements, pulmonary vascular morphometry and analysis of pulmonary MC localization/counts/activation were performed in animal model studies.Results: There was a prevalence of pulmonary MCs in IPAH patients and MCT-rats as compared to the donors and healthy rats, respectively. Notably, the perivascular MCs were increased and a majority of them were degranulated in lungs of IPAH patients and MCT-rats (p < 0.05 versus donor and control, respectively). In MCT-rats, the pharmacological inhibitions of MC degranulation and c-kit with CSS and PLX, respectively by a preventive approach (treatment from day 1 to 21 of MCT-injection) significantly attenuated right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH). Moreover, vascular remodeling, as evident from the significantly decreased muscularization and medial wall thickness of distal pulmonary vessels, was improved. However, treatments with CSS and PLX by a therapeutic approach (from day 21 to 35 of MCT-injection) neither improved hemodynamics and RVH nor vascular remodeling.Conclusions: The accumulation and activation of perivascular MCs in the lungs are the histopathological features present in clinical (IPAH patients) and experimental (MCT-rats) PH. Moreover, the accumulation and activation of MCs in the lungs contribute to the development of PH in MCT-rats. Our findings reveal an important pathophysiological insight into the role of MCs in the pathogenesis of PH in MCT- rats

    Co expression of SCF and KIT in gastrointestinal stromal tumours (GISTs) suggests an autocrine/paracrine mechanism

    Get PDF
    KIT is a tyrosine kinase receptor expressed by several tumours, which has for specific ligand the stem cell factor (SCF). KIT is the main oncogene in gastrointestinal stromal tumours (GISTs), and gain-of-function KIT mutations are present in 70% of these tumours. The aim of the study was to measure and investigate the mechanisms of KIT activation in 80 KIT-positive GIST patients. KIT activation was quantified by detecting phosphotyrosine residues in Western blotting. SCF production was determined by reverse transcriptase–PCR, ELISA and/or immunohistochemistry. Primary cultures established from three GISTs were also analysed. The results show that KIT activation was detected in all cases, even in absence of KIT mutations. The fraction of activated KIT was not correlated with the mutational status of GISTs. Membrane and soluble isoforms of SCF mRNA were present in all GISTs analysed. Additionally, SCF was also detected in up to 93% of GISTs, and seen to be present within GIST cells. Likewise, the two SCF mRNA isoforms were found to be expressed in GIST-derived primary cultures. Thus, KIT activation in GISTs may in part result from the presence of SCF within the tumours

    The potential of hematopoietic growth factors for treatment of Alzheimer's disease: a mini-review

    Get PDF
    There are no effective interventions that significantly forestall or reverse neurodegeneration and cognitive decline in Alzheimer's disease. In the past decade, the generation of new neurons has been recognized to continue throughout adult life in the brain's neurogenic zones. A major challenge has been to find ways to harness the potential of the brain's own neural stem cells to repair or replace injured and dying neurons. The administration of hematopoietic growth factors or cytokines has been shown to promote brain repair by a number of mechanisms, including increased neurogenesis, anti-apoptosis and increased mobilization of bone marrow-derived microglia into brain. In this light, cytokine treatments may provide a new therapeutic approach for many brain disorders, including neurodegenerative diseases like Alzheimer's disease. In addition, neuronal hematopoietic growth factor receptors provide novel targets for the discovery of peptide-mimetic drugs that can forestall or reverse the pathological progression of Alzheimer's disease

    Phase II trial of imatinib mesylate in patients with metastatic melanoma

    Get PDF
    Metastatic melanoma cells express a number of protein tyrosine kinases (PTKs) that are considered to be targets for imatinib. We conducted a phase II trial of imatinib in patients with metastatic melanoma expressing at least one of these PTKs. Twenty-one patients whose tumours expressed at least one PTK (c-kit, platelet-derived growth factor receptors, c-abl, or abl-related gene) were treated with 400 mg of imatinib twice daily. One patient with metastatic acral lentiginous melanoma, containing the highest c-kit expression among all patients, had dramatic improvement on positron emission tomographic scan at 6 weeks and had a partial response lasting 12.8 months. The responder had a substantial increase in tumour and endothelial cell apoptosis at 2 weeks of treatment. Imatinib was fairly well tolerated: no patient required treatment discontinuation because of toxicity. Fatigue and oedema were the only grade 3 or 4 toxicities that occurred in more than 10% of the patients. Imatinib at the studied dose had minimal clinical efficacy as a single-agent therapy for metastatic melanoma. However, based on the characteristics of the responding tumour in our study, clinical activity of imatinib, specifically in patients with melanoma with certain c-kit aberrations, should be examined

    Trade-offs between vegetative growth and acorn production in Quercus lobata during a mast year: the relevance of crop size and hierarchical level within the canopy

    Get PDF
    The concept of trade-offs between reproduction and other fitness traits is a fundamental principle of life history theory. For many plant species, the cost of sexual reproduction affects vegetative growth in years of high seed production through the allocation of resources to reproduction at different hierarchical levels of canopy organization. We have examined these tradeoffs at the shoot and branch level in an endemic California oak, Quercus lobata, during a mast year. To determine whether acorn production caused a reduction in vegetative growth, we studied trees that were high and low acorn producers, respectively. We observed that in both low and high acorn producers, shoots without acorns located adjacent to reproductive shoots showed reduced vegetative growth but that reduced branch-level growth on acorn-bearing branches occurred only in low acorn producers. The availability of local resources, measured as previous year growth, was the main factor determining acorn biomass. These findings show that the costs of reproduction varied among hierarchical levels, suggesting some degree of physiological autonomy of shoots in terms of acorn production. Costs also differed among trees with different acorn crops, suggesting that trees with large acorn crops had more available resources to allocate for growth and acorn production and to compensate for immediate local costs of seed production. These findings provide new insight into the proximate mechanisms for mast-seeding as a reproductive strategy

    CD4+ Regulatory and Effector/Memory T Cell Subsets Profile Motor Dysfunction in Parkinson’s Disease

    Get PDF
    Animal models and clinical studies have linked the innate and adaptive immune system to the pathology of Parkinson’s disease (PD). Despite such progress, the specific immune responses that influence disease progression have eluded investigators. Herein, we assessed relationships between T cell phenotype and function with PD progression. Peripheral blood lymphocytes from two separate cohorts, a discovery cohort and a validation cohort, totaling 113 PD patients and 96 age- and environment-matched caregivers were examined by flow cytometric analysis and T cell proliferation assays. Increased effector/memory T cells (Tem), defined as CD45RO+ and FAS+ CD4+ T cells and decreased CD31+ and α4β7+ CD4+ T cells were associated with progressive Unified Parkinson’s Disease Rating Scale III scores. However, no associations were seen between immune biomarkers and increased age or disease duration. Impaired abilities of regulatory T cells (Treg) from PD patients to suppress effector T cell function was observed. These data support the concept that chronic immune stimulation, notably Tem activation and Treg dysfunction is linked to PD pathobiology and disease severity, but not disease duration. The association of T cell phenotypes with motor symptoms provides fresh avenues for novel biomarkers and therapeutic designs

    Mutation D816V Alters the Internal Structure and Dynamics of c-KIT Receptor Cytoplasmic Region: Implications for Dimerization and Activation Mechanisms

    Get PDF
    The type III receptor tyrosine kinase (RTK) KIT plays a crucial role in the transmission of cellular signals through phosphorylation events that are associated with a switching of the protein conformation between inactive and active states. D816V KIT mutation is associated with various pathologies including mastocytosis and cancers. D816V-mutated KIT is constitutively active, and resistant to treatment with the anti-cancer drug Imatinib. To elucidate the activating molecular mechanism of this mutation, we applied a multi-approach procedure combining molecular dynamics (MD) simulations, normal modes analysis (NMA) and binding site prediction. Multiple 50-ns MD simulations of wild-type KIT and its mutant D816V were recorded using the inactive auto-inhibited structure of the protein, characteristic of type III RTKs. Computed free energy differences enabled us to quantify the impact of D816V on protein stability in the inactive state. We evidenced a local structural alteration of the activation loop (A-loop) upon mutation, and a long-range structural re-organization of the juxta-membrane region (JMR) followed by a weakening of the interaction network with the kinase domain. A thorough normal mode analysis of several MD conformations led to a plausible molecular rationale to propose that JMR is able to depart its auto-inhibitory position more easily in the mutant than in wild-type KIT and is thus able to promote kinase mutant dimerization without the need for extra-cellular ligand binding. Pocket detection at the surface of NMA-displaced conformations finally revealed that detachment of JMR from the kinase domain in the mutant was sufficient to open an access to the catalytic and substrate binding sites

    Clock genes and their genomic distributions in three species of salmonid fishes: Associations with genes regulating sexual maturation and cell cycling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clock family genes encode transcription factors that regulate clock-controlled genes and thus regulate many physiological mechanisms/processes in a circadian fashion. Clock1 duplicates and copies of Clock3 and NPAS2-like genes were partially characterized (genomic sequencing) and mapped using family-based indels/SNPs in rainbow trout (RT)(<it>Oncorhynchus mykiss</it>), Arctic charr (AC)(<it>Salvelinus alpinus</it>), and Atlantic salmon (AS)(<it>Salmo salar</it>) mapping panels.</p> <p>Results</p> <p>Clock1 duplicates mapped to linkage groups RT-8/-24, AC-16/-13 and AS-2/-18. Clock3/NPAS2-like genes mapped to RT-9/-20, AC-20/-43, and AS-5. Most of these linkage group regions containing the Clock gene duplicates were derived from the most recent 4R whole genome duplication event specific to the salmonids. These linkage groups contain quantitative trait loci (QTL) for life history and growth traits (i.e., reproduction and cell cycling). Comparative synteny analyses with other model teleost species reveal a high degree of conservation for genes in these chromosomal regions suggesting that functionally related or co-regulated genes are clustered in syntenic blocks. For example, anti-müllerian hormone (amh), regulating sexual maturation, and ornithine decarboxylase antizymes (oaz1 and oaz2), regulating cell cycling, are contained within these syntenic blocks.</p> <p>Conclusions</p> <p>Synteny analyses indicate that regions homologous to major life-history QTL regions in salmonids contain many candidate genes that are likely to influence reproduction and cell cycling. The order of these genes is highly conserved across the vertebrate species examined, and as such, these genes may make up a functional cluster of genes that are likely co-regulated. CLOCK, as a transcription factor, is found within this block and therefore has the potential to cis-regulate the processes influenced by these genes. Additionally, clock-controlled genes (CCGs) are located in other life-history QTL regions within salmonids suggesting that at least in part, trans-regulation of these QTL regions may also occur via Clock expression.</p
    corecore