2 research outputs found
Development of a New A –Genome-Specific Single Nucleotide Polymorphism Marker Set for the Molecular Characterization of Wheat– Introgression Lines
© 2019 The Author(s). Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum, 2n = 2x = 14, AmAm) and its wild relative T. monococcum subsp. aegilopoides are important sources of economically useful genes that can be exploited for wheat (Triticum aestivum L.) breeding. Einkorn has excellent resistance to fungal diseases and gene transfer is relatively simple via standard breeding methods. To fulfill the growing demand by modern prebreeding programs for a cost-effective high-throughpuprocedure for accurately detecting introgressed chromosomes or chromosome segments from T. monococcum into wheat, we used the Axiom Wheat-Relative Genotyping Array and developed a set of Am genome-specific exome-based single nucleotide polymorphism (SNP) markers suitable for rapid identification of T. monococcum chromatin in a wheat background. We identified 1247 polymorphic SNPs between T. monococcum and wheat. We identified 191 markers across all seven chromosomes of T. monococcum that are also present on an existing Triticum urartu Thum. ex Gandil. genetic map and potentially ordered them on the basis of the high macrocollinearity and conservation of marker order between T. monococcum and T. urartu. The marker set has been tested on leaf-rust-resistant BC3 F4 progenies of wheat–T. monococcum hybrids. Two markers (AX-94492165, AX-95073542) placed on the distal end of the chromosome arm 7AL detected a T. monococcum introgression into wheat. The SNP marker set thus proved highly effective in the identification of T. monococcum chromatin in a wheat background, offering a reliable method for screening and selecting wheat–T. monococcum introgression lines, a procedure that could significantly speed up prebreeding programs
Development and validation of an exome-based SNP marker set for identification of the St, J <sup>r</sup> and J <sup>vs</sup> genomes of Thinopyrym intermedium in a wheat background
Thinopyrum intermedium (2n = 6x = 42, StJrJvs) is one of the most promising reservoirs of useful genes including tolerance to abiotic stresses, perenniality and disease resistance not available in the cultivated bread wheat. The transfer of genetic diversity from wild species to wheat offers valuable responses to the effects of climate change. The new array-based single-nucleotide polymorphism (SNP) marker technology provides cheap and easy-to-use molecular markers for marker-assisted selection (MAS) in wheat breeding programmes. Here, we focus on the generation of a new chromosome-specific SNP marker set that can be used to characterize and identify the Th. intermedium chromosomes or chromosome segments transferred into wheat. A progressive investigation of marker development was conducted using 187 various newly developed wheat–Th. intermedium introgression lines and the Axiom® Wheat-Relative Genotyping array. We employed molecular cytogenetic techniques to clarify the genome constitution of the Th. intermedium parental lines and validated 634 chromosome-specific SNPs. Our data confirmed the allohexaploid nature of Th. intermedium and demonstrated that the St genome-specific GISH signal and markers are present at the centromeric regions of chromosomes 1Jvs, 2Jvs, 3Jvs and 7Jvs. The SNP markers presented here will be introduced into current wheat improvement programmes, offering a significant speed-up in wheat breeding and making it possible to deal with the transfer of the full genetic potential of Th. intermedium into wheat