288 research outputs found
Transcutaneous Vagus Nerve Stimulation (tVNS) applications in cognitive aging: a review and commentary
Differentiating healthy from pathological aging trajectories is extremely timely, as the global population faces an inversion where older adults will soon outnumber younger 5:1. Many cognitive functions (e.g., memory, executive functions, and processing speed) decline with age, a process that can begin as early as midlife, and which predicts subsequent diagnosis with dementia. Although dementia is a devastating and costly diagnosis, there remains limited evidence for medications, therapies, and devices that improve cognition or attenuate the transition into dementia. There is an urgent need to intervene early in neurodegenerative processes leading to dementia (e.g., depression and mild cognitive impairment). In this targeted review and commentary, we highlight transcutaneous Vagus Nerve Stimulation (tVNS) as a neurostimulation method with unique opportunities for applications in diseases of aging, reviewing recent literature, feasibility of use with remote data collection methods/telehealth, as well as limitations and conflicts in the literature. In particular, small sample sizes, uneven age distributions of participants, lack of standardized protocols, and oversampling of non-representative groups (e.g., older adults with no comorbid diagnoses) limit our understanding of the potential of this method. We offer recommendations for how to improve representativeness, statistical power, and generalizability of tVNS research by integrating remote data collection techniques
Structure of the γ-D-glutamyl-L-diamino acid endopeptidase YkfC from Bacillus cereus in complex with L-Ala-γ-D-Glu: insights into substrate recognition by NlpC/P60 cysteine peptidases.
Dipeptidyl-peptidase VI from Bacillus sphaericus and YkfC from Bacillus subtilis have both previously been characterized as highly specific γ-D-glutamyl-L-diamino acid endopeptidases. The crystal structure of a YkfC ortholog from Bacillus cereus (BcYkfC) at 1.8 Å resolution revealed that it contains two N-terminal bacterial SH3 (SH3b) domains in addition to the C-terminal catalytic NlpC/P60 domain that is ubiquitous in the very large family of cell-wall-related cysteine peptidases. A bound reaction product (L-Ala-γ-D-Glu) enabled the identification of conserved sequence and structural signatures for recognition of L-Ala and γ-D-Glu and, therefore, provides a clear framework for understanding the substrate specificity observed in dipeptidyl-peptidase VI, YkfC and other NlpC/P60 domains in general. The first SH3b domain plays an important role in defining substrate specificity by contributing to the formation of the active site, such that only murein peptides with a free N-terminal alanine are allowed. A conserved tyrosine in the SH3b domain of the YkfC subfamily is correlated with the presence of a conserved acidic residue in the NlpC/P60 domain and both residues interact with the free amine group of the alanine. This structural feature allows the definition of a subfamily of NlpC/P60 enzymes with the same N-terminal substrate requirements, including a previously characterized cyanobacterial L-alanine-γ-D-glutamate endopeptidase that contains the two key components (an NlpC/P60 domain attached to an SH3b domain) for assembly of a YkfC-like active site
The MALATANG Survey : The L GAS-L IR Correlation on Sub-kiloparsec Scale in Six Nearby Star-forming Galaxies as Traced by HCN J = 4 → 3 and HCO + J = 4 → 3
This is an author-created, un-copyedited version of an article published in The Astrophysical Journal. The Version of Record is available online at https://doi.org/10.3847/1538-4357/aac512.We present HCN J = 4→3 and HCO+ J = 4→3 maps of six nearby star-forming galaxies, NGC 253, NGC 1068, IC 342, M82, M83, and NGC 6946, obtained with the James Clerk Maxwell Telescope as part of the MALATANG survey. All galaxies were mapped in the central 2×2 region at 14 (FWHM) resolution (corresponding to linear scales of ∼0.2-1.0 kpc). The LIR-Ldense relation, where the dense gas is traced by the HCN J = 4→3 and the HCO+ J = 4→3 emission, measured in our sample of spatially resolved galaxies is found to follow the linear correlation established globally in galaxies within the scatter. We find that the luminosity ratio, LIR/Ldense, shows systematic variations with LIR within individual spatially resolved galaxies, whereas the galaxy-integrated ratios vary little. A rising trend is also found between LIR/Ldense ratio and the warm-dust temperature gauged by the 70 μm/100 μm flux ratio. We find that the luminosity ratios of IR/HCN (4-3) and IR/HCO+ (4-3), which can be taken as a proxy for the star formation efficiency (SFE) in the dense molecular gas (SFE dense), appear to be nearly independent of the dense gas fraction ( f dense) for our sample of galaxies. The SFE of the total molecular gas (SFEmol) is found to increase substantially with f dense when combining our data with those on local (ultra)luminous infrared galaxies and high-z quasars. The mean LHCN(4-3) LHCO+(4-3) line ratio measured for the six targeted galaxies is 0.9±0.6. No significant correlation is found for the L'HCN(4-3) L'HCO+(4-3) ratio with the star formation rate as traced by L IR, nor with the warm-dust temperature, for the different populations of galaxies.Peer reviewe
Assessing Fish and Motile Fauna around Offshore Windfarms Using Stereo Baited Video
There remains limited knowledge of how offshore windfarm developments influence fish assemblages, particularly at a local scale around the turbine structures. Considering the existing levels of anthropogenic pressures on coastal fish populations it is becoming increasingly important for developers and environmental regulators to gain a more comprehensive understanding of the factors influencing fish assemblages. Improving our ability to assess such fish populations in close proximity to structures will assist in increasing this knowledge. In the present study we provide the first trial use of Baited Remote Underwater Stereo-Video systems (stereo BRUVs) for the quantification of motile fauna in close proximity to offshore wind turbines. The study was conducted in the Irish Sea and finds the technique to be a viable means of assessing the motile fauna of such environments. The present study found a mixture of species including bottom dwellers, motile crustaceans and large predatory fish. The majority of taxa observed were found to be immature individuals with few adult individuals recorded. The most abundant species were the angular crab (Goneplax rhomboides) and the small-spotted catshark (Scyliorhinus canicula). Of note in this study was the generally low abundance and diversity of taxa recorded across all samples, we hypothesise that this reflects the generally poor state of the local fauna of the Irish Sea. The faunal assemblages sampled in close proximity to turbines were observed to alter with increasing distance from the structure, species more characteristic of hard bottom environments were in abundance at the turbines (e.g. Homarus gammarus, Cancer pagarus, Scyliorhinus spp.) and those further away more characteristic of soft bottoms (e.g. Norwegian Lobster). This study highlights the need for the environmental impacts of offshore renewables on motile fauna to be assessed using targeted and appropriate tools. Stereo BRUVs provide one of those tools, but like the majority of methods for sampling marine biota, they have limitations. We conclude our paper by providing a discussion of the benefits and limitations of using this BRUV technique for assessing fauna within areas close to offshore windfarms
Structure of an essential bacterial protein YeaZ (TM0874) from Thermotoga maritima at 2.5 Å resolution
The crystal structure of an essential bacterial protein, YeaZ, from T. maritima identifies an interface that potentially mediates protein–protein interaction
Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron
The crystal structure of a novel MACPF protein, which may play a role in the adaptation of commensal bacteria to host environments in the human gut, was determined and analyzed
A conserved fold for fimbrial components revealed by the crystal structure of a putative fimbrial assembly protein (BT1062) from Bacteroides thetaiotaomicron at 2.2 Å resolution
The crystal structure of BT1062 from Bacteroides thetaiotaomicron revealed a conserved fold that is widely adopted by fimbrial components
Structure of Bacteroides thetaiotaomicron BT2081 at 2.05 Å resolution: the first structural representative of a new protein family that may play a role in carbohydrate metabolism
The crystal structure of BT2081 from B. thetaiotaomicron reveals a two-domain protein with a putative carbohydrate-binding site in the C-Âterminal domain
Asymmetrical Gene Flow in a Hybrid Zone of Hawaiian Schiedea (Caryophyllaceae) Species with Contrasting Mating Systems
Asymmetrical gene flow, which has frequently been documented in naturally occurring hybrid zones, can result from various genetic and demographic factors. Understanding these factors is important for determining the ecological conditions that permitted hybridization and the evolutionary potential inherent in hybrids. Here, we characterized morphological, nuclear, and chloroplast variation in a putative hybrid zone between Schiedea menziesii and S. salicaria, endemic Hawaiian species with contrasting breeding systems. Schiedea menziesii is hermaphroditic with moderate selfing; S. salicaria is gynodioecious and wind-pollinated, with partially selfing hermaphrodites and largely outcrossed females. We tested three hypotheses: 1) putative hybrids were derived from natural crosses between S. menziesii and S. salicaria, 2) gene flow via pollen is unidirectional from S. salicaria to S. menziesii and 3) in the hybrid zone, traits associated with wind pollination would be favored as a result of pollen-swamping by S. salicaria. Schiedea menziesii and S. salicaria have distinct morphologies and chloroplast genomes but are less differentiated at the nuclear loci. Hybrids are most similar to S. menziesii at chloroplast loci, exhibit nuclear allele frequencies in common with both parental species, and resemble S. salicaria in pollen production and pollen size, traits important to wind pollination. Additionally, unlike S. menziesii, the hybrid zone contains many females, suggesting that the nuclear gene responsible for male sterility in S. salicaria has been transferred to hybrid plants. Continued selection of nuclear genes in the hybrid zone may result in a population that resembles S. salicaria, but retains chloroplast lineage(s) of S. menziesii
Measurement-Induced State Transitions in a Superconducting Qubit: Within the Rotating Wave Approximation
Superconducting qubits typically use a dispersive readout scheme, where a
resonator is coupled to a qubit such that its frequency is qubit-state
dependent. Measurement is performed by driving the resonator, where the
transmitted resonator field yields information about the resonator frequency
and thus the qubit state. Ideally, we could use arbitrarily strong resonator
drives to achieve a target signal-to-noise ratio in the shortest possible time.
However, experiments have shown that when the average resonator photon number
exceeds a certain threshold, the qubit is excited out of its computational
subspace, which we refer to as a measurement-induced state transition. These
transitions degrade readout fidelity, and constitute leakage which precludes
further operation of the qubit in, for example, error correction. Here we study
these transitions using a transmon qubit by experimentally measuring their
dependence on qubit frequency, average photon number, and qubit state, in the
regime where the resonator frequency is lower than the qubit frequency. We
observe signatures of resonant transitions between levels in the coupled
qubit-resonator system that exhibit noisy behavior when measured repeatedly in
time. We provide a semi-classical model of these transitions based on the
rotating wave approximation and use it to predict the onset of state
transitions in our experiments. Our results suggest the transmon is excited to
levels near the top of its cosine potential following a state transition, where
the charge dispersion of higher transmon levels explains the observed noisy
behavior of state transitions. Moreover, occupation in these higher energy
levels poses a major challenge for fast qubit reset
- …