4,629 research outputs found

    Pathologic diagnosis of malignant mesothelioma: chronological prospect and advent of recommendations and guidelines

    Get PDF
    Malignant mesothelioma is rare and difficult to diagnose. Its identification depends upon pathological investigation (cyto-histological assessment and immunohistochemistry) supported by clinical and radiological evidence. In the last decade, the standardization of diagnostic methods has become a major focus of debate among pathologists and clinicians. This has led to the writing of guidelines and recommendation for the diagnosis to achieve the goal of a standard diagnosis. In this article, a chronological view relating to the pathological diagnosis of MM is presented together with a review of guidelines/recommendation

    Robust Simulation of a TaO Memristor Model

    Get PDF
    This work presents a continuous and differentiable approximation of a Tantalum oxide memristor model which is suited for robust numerical simulations in software. The original model was recently developed at Hewlett Packard labs on the basis of experiments carried out on a memristor manufactured in house. The Hewlett Packard model of the nano-scale device is accurate and may be taken as reference for a deep investigation of the capabilities of the memristor based on Tantalum oxide. However, the model contains discontinuous and piecewise differentiable functions respectively in state equation and Ohm's based law. Numerical integration of the differential algebraic equation set may be significantly facilitated under substitution of these functions with appropriate continuous and differentiable approximations. A detailed investigation of classes of possible continuous and differentiable kernels for the approximation of the discontinuous and piecewise differentiable functions in the original model led to the choice of near optimal candidates. The resulting continuous and differentiable DAE set captures accurately the dynamics of the original model, delivers well-behaved numerical solutions in software, and may be integrated into a commercially-available circuit simulator

    Buoyancy-driven motion of a deformable drop toward a planar wall at low Reynolds number

    Get PDF
    The slow viscous motion of a deformable drop moving normal to a planar wall is studied numerically. In particular, a boundary integral technique employing the Green's function appropriate to a no-slip planar wall is used. Beginning with spherical drop shapes far from the wall, highly deformed and ‘dimpled’ drop configurations are obtained as the planar wall is approached. The initial stages of dimpling and their evolution provide information and insight into the basic assumptions of film-drainage theory
    corecore