9 research outputs found

    Glacial fjord environment and ecosystem reconstructed from sediments deposited in Bowdoin Fjord, northwestern Greenland.

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions: [OG] Polar Geosciences, Wed. 4 Dec. / 3F Seminar room, National Institute of Polar Researc

    Tides modulate crevasse opening prior to a major calving event at Bowdoin Glacier, Northwest Greenland

    Get PDF
    This research is part of the Sun2ice project (ETH Grant ETH-12 16-2), supported by the Dr. Alfred and Flora Spälti and the ETH Zurich Foundation. Field work was funded by the Swiss National Science Foundation, grant 200021-153179/1, and the Japanese Ministry of Education, Culture, Sports, Science and Technology through the Arctic Challenge for Sustainability (ArCS) project. Implementation of the remeshing routine has been performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme.Retreat of calving glaciers worldwide has contributed substantially to sea-level rise in recent decades. Mass loss by calving contributes significantly to the uncertainty of sea-level rise projections. At Bowdoin Glacier, Northwest Greenland, most calving occurs by a few large events resulting from kilometre-scale fractures forming parallel to the calving front. High-resolution terrestrial radar interferometry data of such an event reveal that crevasse opening is fastest at low tide and accelerates during the final 36 h before calving. Using the ice flow model Elmer/Ice, we identify the crevasse water level as a key driver of modelled opening rates. Sea water-level variations in the range of local tidal amplitude (1 m) can reproduce observed opening rate fluctuations, provided crevasse water level is at least 4 m above the low-tide sea level. The accelerated opening rates within the final 36 h before calving can be modelled by additional meltwater input into the crevasse, enhanced ice cliff undercutting by submarine melt, ice damage increase due to tidal cyclic fatigue, crevasse deepening or a combination of these processes. Our results highlight the influence of surface meltwater and tides on crevasse opening leading to major calving events at grounded tidewater glaciers such as Bowdoin.Publisher PDFPeer reviewe

    Tides modulate crevasse opening prior to a major calving event at Bowdoin Glacier, Northwest Greenland

    No full text
    Retreat of calving glaciers worldwide has contributed substantially to sea-level rise in recent decades. Mass loss by calving contributes significantly to the uncertainty of sea-level rise projections. At Bowdoin Glacier, Northwest Greenland, most calving occurs by a few large events resulting from kilometre-scale fractures forming parallel to the calving front. High-resolution terrestrial radar interferometry data of such an event reveal that crevasse opening is fastest at low tide and accelerates during the final 36 h before calving. Using the ice flow model Elmer/Ice, we identify the crevasse water level as a key driver of modelled opening rates. Sea water-level variations in the range of local tidal amplitude (1 m) can reproduce observed opening rate fluctuations, provided crevasse water level is at least 4 m above the low-tide sea level. The accelerated opening rates within the final 36 h before calving can be modelled by additional meltwater input into the crevasse, enhanced ice cliff undercutting by submarine melt, ice damage increase due to tidal cyclic fatigue, crevasse deepening or a combination of these processes. Our results highlight the influence of surface meltwater and tides on crevasse opening leading to major calving events at grounded tidewater glaciers such as Bowdoin.</p

    Rapidly changing glaciers, ocean and coastal environments, and their impact on human society in the Qaanaaq region, northwestern Greenland

    No full text
    Environments along the coast of Greenland are rapidly changing under the influence of a warming climate in the Arctic. To better understand the changes in the coastal environments, we performed researches in the Qaanaaq region in northwestern Greenland as a part of the ArCS (Arctic Challenge for Sustainability) Project. Mass loss of ice caps and marine-terminating outlet glaciers were quantified by field and satellite observations. Measurements and sampling in fjords revealed the important role of glacial meltwater discharge in marine ecosystems. Flooding of a glacial stream in Qaanaaq and landslides in a nearby settlement were investigated to identify the drivers of the incidents. Our study observed rapid changes in the coastal environments, and their critical impact on the society in Qaanaaq. We organized workshops with the residents to absorb local and indigenous knowledge, as well as to share the results and data obtained in the project. Continuous effort towards obtaining long-term observations requiring involvement of local communities is crucial to contribute to a sustainable future in Greenland
    corecore