184 research outputs found

    Periodic Halpha variations in GL 581: Further evidence for an activity origin to GL 581d

    Full text link
    Radial velocity measurements showed evidence that the M dwarf GL 581 might host a planet, GL 581d, in the so-called "habitable zone" of the star. A study of Halpha in GL 581 demonstrated that changes in this activity indicator correlated with radial velocity variations attributed to GL 581d. An exopplanet that was important for studies of planet habitability may be an artifact of stellar activity. Previous investigations analyzing the same activity data have reached different conclusions regarding the existence of GL 581d. We therfore investigated the Halpha variations for GL 581 to assess the nature of the radial velocity variations attributed to the possible planet GL 581d. We performed a Fourier analysis of the published Halpha measurements for GL 581d using a so-called pre-whitening process to isolate the variations at the orbital frequency of GL 581d. The frequency analysis yields five significant frequencies, one of which is associated with the 66.7 d orbital period of the presumed planet Gl 581d. The Halpha variations at this period show sine-like variations that are 180 degrees out-of-phase with the radial velocity variations of GL 581d. This is seen in thefull data set that spans almost 7 years, as well as a subset of the data that had good temporal sampling over 230 days. Furthermore, No significant temporal variations are found in the ratio of the amplitudes of the Halpha index and radial velocity variations. This provides additional evidence that the radial velocity signal attributed to GL 581d is in fact due to stellar activity.Comment: 5 pages, 6 figures, accepted by Astronomy and Astrophysic

    On the Nature of the Radial Velocity Variability of Aldebaran: A Search for Spectral Line Bisector Variations

    Get PDF
    The shape of the Ti I 6303.8 A spectral line of Aldebaran as measured by the line bisector was investigated using high signal-to-noise, high resolution data. The goal of this study was to understand the nature of the 643-day period in the radial velocity for this star reported by Hatzes and Cochran. Variations in the line bisector with the radial velocity period would provide strong evidence in support of rotational modulation or stellar pulsations as the cause of the 643-day period. A lack of any bisector variability at this period would support the planet hypothesis. Variations in the line asymmetries are found with a period of 49.93 days. These variations are uncorrelated with 643-day period found previously in the radial velocity measurements. It is demonstrated that this 50-day period is consistent with an m=4 nonradial sectoral g-mode oscillation. The lack of spectral variability with the radial velocity period of 643 days may provide strong evidence in support of the hypothesis that this variability stems from the reflex motion of the central star due to a planetary companion having a mass of 11 Jupiter masses. However, this long-period variability may still be due to a low order (m=2) pulsation mode since these would cause bisector variations less than the error measurement.Comment: LaTeX, 8 pages, 10 figures. Accepted in Monthly Notices of the Royal Astronomical Societ

    Results from the Exoplanet Search Programmes with BEST and TEST

    Full text link
    Thueringer Landessternwarte Tautenburg (TLS) has started to operate a small dedicated telescope - the Tautenburg Exoplanet Search Telescope (TEST) - searching for transits of extrasolar planets in photometric time series observations. In a joint effort with the Berlin Exoplanet Search Telescope (BEST) operated by the Institut fuer Planetenforschung of the "Deutsches Zentrum fuer Luft- und Raumfahrt (DLR)" at the Observatoire de Haute-Provence (OHP), France, two observing sites are used to optimise transit search. Here, we give a short overview of these systems and the data analysis. We describe a software pipeline that we have set up to identify transit events of extrasolar planets and variable stars in time series data from these and other telescopes, and report on some first results.Comment: 6 pages, 5 figures, contributed paper to the "Solar and Stellar Physics Through Eclipses" conference, eds. O. Demircan, S.O. Selam, B. Albayrak (Turkey, March 2006

    Searching for Planets in the Hyades V: Limits on Planet Detection in the Presence of Stellar Activity

    Full text link
    We present the results of a radial velocity survey of a sample of Hyades stars, and discuss the effects of stellar activity on radial velocity measurements. The level of radial velocity scatter due to rotational modulation of stellar surface features for the Hyades is in agreement with the predictions of Saar & Donahue (1997)- the maximum radial velocity rms of up to ~50 m/s, with an average rms of ~16 m/s. In this sample of 94 stars, we find 1 new binary, 2 stars with linear trends indicative of binary companions, and no close-in giant planets. We discuss the limits on extrasolar planet detection in the Hyades and the constraints imposed on radial velocity surveys of young stars.Comment: To appear in the June 2004 issue of A

    News From The Gamma Cephei Planetary System

    Full text link
    The Gamma Cephei planetary system is one of the most interesting systems due to several reasons: 1.) it is the first planet candidate detected by precise radial velocity (RV) measurements that was discussed in the literature (Campbell et al. 1988); 2.) it is a tight binary system with a ~ 20AU; and 3.) the planet host star is an evolved K-type star. In Hatzes et al. (2003) we confirmed the presence of the planetary companion with a minimum mass of 1.7 M_Jup at 2 AU. In this paper we present additional eight years of precise RV data from the Harlan J. Smith 2.7 m Telescope and its Tull Coude spectrograph at McDonald Observatory. The 900 d signal, that is interpreted as the presence of the giant planetary companion, is strongly confirmed by adding the new data. We present an updated orbital solution for the planet, which shows that the planet is slightly more massive and the orbit more circular than previous results have suggested. An intensive high-cadence week of RV observations in 2007 revealed that Gamma Cep A is a multi-periodic pulsator. We discuss this issue within the context of searching for additional planets in this system.Comment: Part of PlanetsbeyondMS/2010 proceedings http://arxiv.org/html/1011.660

    Oscillations and velocity structure of a long-lived cyclonic spot

    Get PDF
    Dark brown cyclonic spots ('barges') at 14°N were studied by using Voyager 1 and 2 images of Jupiter. Movie sequences were made to study the spots' behavior over intervals of 50 days and longer. These movies revealed that the length and width vary by ±9% with a period of about 15 days, while the area remains approximately constant. The horizontal velocity field was investigated for an interval of about 1 day. Flow around the largest barge (feature 6) occurs as a ring current. The vorticity inferred is about 2½ times that of the ambient cyclonic zonal circulation, and about one-half the value of the local planetary vorticity. Length and width variations appear to be associated with a nonzero horizontal divergence field. If the oscillations are a natural mode of the system, the 15-day period will provide an important datum for testing models of stable closed vortices
    corecore