4 research outputs found

    Short-term restoration practices change the bacterial community in degraded soil from the Brazilian semiarid

    No full text
    Abstract Land degradation by deforestation adversely impacts soil properties, and long-term restoration practices have been reported to potentially reverse these effects, particularly on soil microorganisms. However, there is limited knowledge regarding the short-term effects of restoration on the soil bacterial community in semiarid areas. This study evaluates the bacterial community in soils experiencing degradation (due to slash-and-burn deforestation) and restoration (utilizing stone cordons and revegetation), in comparison to a native soil in the Brazilian semiarid region. Three areas were selected: (a) under degradation; (b) undergoing short-term restoration; and (c) a native area, and the bacterial community was assessed using 16S rRNA sequencing on soil samples collected during both dry and rainy seasons. The dry and rainy seasons exhibited distinct bacterial patterns, and native sites differed from degraded and restoration sites. Chloroflexi and Proteobacteria phyla exhibited higher prevalence in degraded and restoration sites, respectively, while Acidobacteria and Actinobacteria were more abundant in sites undergoing restoration compared to degraded sites. Microbial connections varied across sites and seasons, with an increase in nodes observed in the native site during the dry season, more edges and positive connections in the restoration site, and a higher occurrence of negative connections in the degradation site during the rainy season. Niche occupancy analysis revealed that degradation favored specialists over generalists, whereas restoration exhibited a higher prevalence of generalists compared to native sites. Specifically, degraded sites showed a higher abundance of specialists in contrast to restoration sites. This study reveals that land degradation impacts the soil bacterial community, leading to differences between native and degraded sites. Restoring the soil over a short period alters the status of the bacterial community in degraded soil, fostering an increase in generalist microbes that contribute to enhanced soil stability

    Temporal Stability of Soil Microbial Properties in Responses to Long-Term Application of Compost Obtained from Tannery Sludge

    No full text
    Successive applications of compost obtained from tannery sludge affected the soil microbial biomass and activity. However, the effect of this practice on the temporal stability of soil microbial properties is not known. This study evaluated the temporal stability of microbial biomass, respiration, and enzymes activities in soil with successive applications of compost obtained from tannery sludge. Soil samples (0–10 cm depth) were collected from sites with successive application of compost at the lowest (2.5 ton/ha) and highest (20 ton/ha) rates, including the control (0 ton/ha). Soil microbial biomass carbon (MBC) and nitrogen (MBN), respiration, dehydrogenase, and urease activities were evaluated at 0, 30-, 60-, 90-, and 150-days post-application. The soil microbial properties varied as per treatments and sampling time. The principal response curve showed higher variation of soil microbial properties in the treatment having highest rate of compost. This analysis showed dehydrogenase, urease, and MBC as the most responsive parameters. The temporal stability of soil microbial parameters showed highest values at the lowest rate of compost. This study showed that the successive application of compost contributed to a decrease in variation and increase in temporal stability of soil microbial properties at the lowest rate

    Temporal Stability of Soil Microbial Properties in Responses to Long-Term Application of Compost Obtained from Tannery Sludge

    No full text
    Successive applications of compost obtained from tannery sludge affected the soil microbial biomass and activity. However, the effect of this practice on the temporal stability of soil microbial properties is not known. This study evaluated the temporal stability of microbial biomass, respiration, and enzymes activities in soil with successive applications of compost obtained from tannery sludge. Soil samples (0–10 cm depth) were collected from sites with successive application of compost at the lowest (2.5 ton/ha) and highest (20 ton/ha) rates, including the control (0 ton/ha). Soil microbial biomass carbon (MBC) and nitrogen (MBN), respiration, dehydrogenase, and urease activities were evaluated at 0, 30-, 60-, 90-, and 150-days post-application. The soil microbial properties varied as per treatments and sampling time. The principal response curve showed higher variation of soil microbial properties in the treatment having highest rate of compost. This analysis showed dehydrogenase, urease, and MBC as the most responsive parameters. The temporal stability of soil microbial parameters showed highest values at the lowest rate of compost. This study showed that the successive application of compost contributed to a decrease in variation and increase in temporal stability of soil microbial properties at the lowest rate
    corecore