39 research outputs found

    Simultaneous elastic and electromechanical imaging by scanning probe microscopy: Theory and applications to ferroelectric and biological materials

    Get PDF
    An approach for combined imaging of elastic and electromechanical properties of materials, referred to as piezoacoustic scanning probe microscopy (PA-SPM), is presented. Applicability of this technique for elastic and electromechanical imaging with nanoscale resolution in such dissimilar materials as ferroelectrics and biological tissues is demonstrated. The PA-SPM signal formation is analyzed based on the theory of nanoelectromechanics of piezoelectric indentation and signal sensitivity to materials properties and imaging conditions. It is shown that simultaneous measurements of local indentation stiffness and indentation piezocoefficient provide the most complete description of the local electroelastic properties for transversally isotropic materials, thus making piezoacoustic SPM a comprehensive imaging and analysis tool. The contrast formation mechanism in the low frequency regime is described in terms of tip-surface contact mechanics. Signal generation volumes for electromechanical and elastic signals are determined and relative sensitivity of piezoresponse force microscopy (PFM) and atomic force acoustic microscopy (AFAM) for topographic cross-talk is established

    Electromechanical imaging of biomaterials by scanning probe microscopy

    Get PDF
    The majority of calcified and connective tissues possess complex hierarchical structure spanning the length scales from nanometers to millimeters. Understanding the biological functionality of these materials requires reliable methods for structural imaging on the nanoscale. Here, we demonstrate an approach for electromechanical imaging of the structure of biological samples on the length scales from tens of microns to nanometers using piezoresponse force microscopy (PFM), which utilizes the intrinsic piezoelectricity of biopolymers such as proteins and polysaccharides as the basis for high-resolution imaging. Nanostructural imaging of a variety of protein-based materials, including tooth, antler, and cartilage, is demonstrated. Visualization of protein fibrils with sub-10 nm spatial resolution in a human tooth is achieved. Given the near-ubiquitous presence of piezoelectricity in biological systems, PFM is suggested as a versatile tool for micro- and nanostructural imaging in both connective and calcified tissues

    Theory-assisted determination of nano-rippling and impurities in atomic resolution images of angle-mismatched bilayer graphene

    Get PDF
    Ripples and impurity atoms are universally present in 2D materials, limiting carrier mobility, creating pseudo–magnetic fields, or affecting the electronic and magnetic properties. Scanning transmission electron microscopy (STEM) generally provides picometer-level precision in the determination of the location of atoms or atomic 'columns' in the in-image plane (xy plane). However, precise atomic positions in the z-direction as well as the presence of certain impurities are difficult to detect. Furthermore, images containing moirĂ© patterns such as those in angle-mismatched bilayer graphene compound the problem by limiting the determination of atomic positions in the xy plane. Here, we introduce a reconstructive approach for the analysis of STEM images of twisted bilayers that combines the accessible xy coordinates of atomic positions in a STEM image with density-functional-theory calculations. The approach allows us to determine all three coordinates of all atomic positions in the bilayer and establishes the presence and identity of impurities. The deduced strain-induced rippling in a twisted bilayer graphene sample is consistent with the continuum model of elasticity. We also find that the moirĂ© pattern induces undulations in the z direction that are approximately an order of magnitude smaller than the strain-induced rippling. A single substitutional impurity, identified as nitrogen, is detected. The present reconstructive approach can, therefore, distinguish between moirĂ© and strain-induced effects and allows for the full reconstruction of 3D positions and atomic identities

    Chemically induced Jahn–Teller ordering on manganite surfaces

    Get PDF
    Physical and electrochemical phenomena at the surfaces of transition metal oxides and their coupling to local functionality remains one of the enigmas of condensed matter physics. Understanding the emergent physical phenomena at surfaces requires the capability to probe the local composition, map order parameter fields and establish their coupling to electronic properties. Here we demonstrate that measuring the sub-30-pm displacements of atoms from high-symmetry positions in the atomically resolved scanning tunnelling microscopy allows the physical order parameter fields to be visualized in real space on the single-atom level. Here, this local crystallographic analysis is applied to the in-situ-grown manganite surfaces. In particular, using direct bond-angle mapping we report direct observation of structural domains on manganite surfaces, and trace their origin to surface-chemistryinduced stabilization of ordered Jahn–Teller displacements. Density functional calculations provide insight into the intriguing interplay between the various degrees of freedom now resolved on the atomic level

    Dynamic Behavior in Piezoresponse Force Microscopy

    Full text link
    Frequency dependent dynamic behavior in Piezoresponse Force Microscopy (PFM) implemented on a beam-deflection atomic force microscope (AFM) is analyzed using a combination of modeling and experimental measurements. The PFM signal comprises contributions from local electrostatic forces acting on the tip, distributed forces acting on the cantilever, and three components of the electromechanical response vector. These interactions result in the bending and torsion of the cantilever, detected as vertical and lateral PFM signals. The relative magnitudes of these contributions depend on geometric parameters of the system, the stiffness and frictional forces of tip-surface junction, and operation frequencies. The dynamic signal formation mechanism in PFM is analyzed and conditions for optimal PFM imaging are formulated. The experimental approach for probing cantilever dynamics using frequency-bias spectroscopy and deconvolution of electromechanical and electrostatic contrast is implemented.Comment: 65 pages, 15 figures, high quality version available upon reques

    Identifying the secondary electron cutoff in ultraviolet photoemission spectra for work function measurements of non-ideal surfaces

    No full text
    Abstract Absolute values of work functions can be determined in ultraviolet photoemission spectroscopy (UPS) by measuring the minimum kinetic energy of secondary electrons generated by a known photon energy. However, some samples can produce spectra that are difficult to interpret due to additional intensity below the true secondary electron cutoff. Disordered absorbates on elemental metals add small intensity below the onset for the transition metal surfaces studied, which can be attributed to energy losses after photoelectrons are generated. In contrast, spectra from WO3−x films can produce multiple onsets with comparable intensity which do not fit this model. False onsets (in the context of work function measurements) can be minimized by optimizing experimental detection parameters including limiting analyzer acceptance angles and pass energy. True work functions can be identified by examining the onsets as the sample bias is varied

    Detecting and Correcting Piezoelectric-Tube Actuator Drift Induced Distortion in Atomic-Resolution Scanning Tunneling Microscope Images from Crystal Surfaces

    No full text
    Since its development in 1981, Scanning Tunneling Microscopy (STM) has become a premier technology in imaging at atomic resolution across disciplines. The “Scanning” in STM refers typically to the movement of the sample relative to the probing tip, as controlled by piezoelectric-tube actuators. These actuators allow the sample to be moved at sub-nanometer precision, but over several repeated scans are susceptible to drift, especially when operating in open-loop mode. This drift leads to directly detectable distortions in the image [1], which inevitably decrease the fidelity and by extension the science that can be done with the image. To make matters worse, as the process to correct or account for this drift can be complex, many publications simply forgo the exercise entirely, leading to some “untenable conclusions” [1] being drawn from compromised data

    Bioelectromechanical imaging by scanning probe microscopy: Galvani’s experiment at the nanoscale

    Get PDF
    Since the discovery in the late 18th century of electrically induced mechanical response in muscle tissue, coupling between electrical and mechanical phenomena has been shown to be a near-universal feature of biological systems. Here, we employ scanning probe microscopy (SPM) to measure the sub-Angstrom mechanical response of a biological system induced by an electric bias applied to a conductive SPM tip. Visualization of the spiral shape and orientation of protein fibrils with 5 nm spatial resolution in a human tooth and chitin molecular bundle orientation in a butterfly wing is demonstrated. In particular, the applicability of SPM-based techniques for the determination of molecular orientation is discussed

    Defect-induced asymmetry of local hysteresis loops on BiFeO3 surfaces \ud

    Get PDF
    Local piezoresponse hysteresis loops were systematically studied on the surface of ferroelectric thin films of BiFeO3 grown on SrRuO3 and La0.7Sr0.3MnO3 electrodes and compared between ultrahigh vacuum and ambient environment. The loops on all the samples exhibited characteristic asymmetry manifested in the difference of the piezoresponse slope following local domain nucleation. Spatially resolved mapping has revealed that the asymmetry is strongly correlated with the random-field disorder inherent in the films and is not affected by the random-bond disorder component. The asymmetry thus originates from electrostatic disorder within the film, which allows using it as a unique signature of single defects or defect clusters. The electrostatic effects due to the measurement environment also contribute to the total asymmetry of the piezoresponse loop, albeit with a much smaller magnitude compared to local defects. \u
    corecore