440 research outputs found
Ecological Transitions in a Coastal Upwelling Ecosystem
The southern California Current Ecosystem (CCE) is a dynamic eastern boundary current ecosystem that is forced by ocean-atmosphere variability on interannual, multidecadal, and long-term secular time scales. Recent evidence suggests that apparent abrupt transitions in ecosystem conditions reflect linear tracking of the physical environment rather than oscillations between alternative preferred states. A space-for-time exchange is one approach that permits use of natural spatial variability in the CCE to develop a mechanistic understanding needed to project future temporal changes. The role of (sub)mesoscale frontal systems in altering rates of nutrient transport, primary and secondary production, export fluxes, and the rates of encounters between predators and prey is an issue central to this pelagic ecosystem and its future trajectory because the occurrence of such frontal features is increasing
Sonography for hip joint effusion in adults with hip pain
OBJECTIVE: To study the prevalence of ultrasonic hip joint effusion and
its relation with clinical, radiological and laboratory (ESR) findings in
adults with hip pain. METHODS: Patients (n = 224) aged 50 years or older
with hip pain, referred by the general practitioner for radiological
investigation, underwent a standardised examination. The distance between
the ventral capsule and the femoral neck, an increase in which represents
joint effusion, was measured sonographically. Joint effusion was defined
in three different ways: "effusion" according to Koski's definition,
"major effusion", and "asymmetrical effusion" based on only individual
side differences. RESULTS: "Effusion" was present in 80 (38%), "major
effusion" in 20 (9%), and "asymmetrical effusion" in 47 (22%) patients.
Pain in the groin or medial thigh, pain aggravated by lying on the side,
decreased extension/internal rotation/abduction/flexion, painful external
rotation, and pain on palpation in the groin showed a significant relation
(adjusted for age and radiological osteoarthritis of the hip) with
ultrasonic hip joint effusion. "Major effusion" showed a significant
relation with an increased ESR. When patients with bilateral pain and
increased ESR were excluded, a side difference in the range of motion of
extension of the hip was shown to be a good predictor for "asymmetrical
effusion" (positive predictive value: 71%, negative predictive value:
80%). CONCLUSION: This study showed a relatively high prevalence of
ultrasonic joint effusion in adults with hip pain in general practice.
Furthermore the results indicate a relation between joint effusion and
clinical signs
Global Structure of Deffayet (Dvali-Gabadadze-Porrati) Cosmologies
We detail the global structure of the five-dimensional bulk for the
cosmological evolution of Dvali-Gabadadze-Porrati braneworlds. The picture
articulated here provides a framework and intuition for understanding how
metric perturbations leave (and possibly reenter) the brane universe. A bulk
observer sees the braneworld as a relativistically expanding bubble, viewed
either from the interior (in the case of the
Friedmann-Lemaitre-Robertson-Walker phase) or the exterior (the
self-accelerating phase). Shortcuts through the bulk in the first phase can
lead to an apparent brane causality violation and provide an opportunity for
the evasion of the horizon problem found in conventional four-dimensional
cosmologies. Features of the global geometry in the latter phase anticipate a
depletion of power for linear metric perturbations on large scales.Comment: 15 pages, 4 figures, RevTeX. References adde
The Alvarez impact theory of mass extinction; limits to its applicability and the „great expectations syndrome”
For the past three decades, the Alvarez impact theory of mass extinction, causally related to catastrophic meteorite impacts, has been recurrently applied to multiple extinction boundaries. However, these multidisciplinary research efforts across the globe have been largely unsuccessful to date, with one outstanding exception: the Cretaceous-Paleogene boundary. The unicausal impact scenario as a leading explanation, when applied to the complex fossil record, has resulted in force-fitting of data and interpretations ("great expectations syndrome". The misunderstandings can be grouped at three successive levels of the testing process, and involve the unreflective application of the impact paradigm: (i) factual misidentification, i.e., an erroneous or indefinite recognition of the extraterrestrial record in sedimentological, physical and geochemical contexts, (ii) correlative misinterpretation of the adequately documented impact signals due to their incorrect dating, and (iii) causal overestimation when the proved impact characteristics are doubtful as a sufficient trigger of a contemporaneous global cosmic catastrophe. Examples of uncritical belief in the simple cause-effect scenario for the Frasnian-Famennian, Permian-Triassic, and Triassic-Jurassic (and the Eifelian-Givetian and Paleocene-Eocene as well) global events include mostly item-1 pitfalls (factual misidentification), with Ir enrichments and shocked minerals frequently misidentified. Therefore, these mass extinctions are still at the first test level, and only the F-F extinction is potentially seen in the context of item-2, the interpretative step, because of the possible causative link with the Siljan Ring crater (53 km in diameter). The erratically recognized cratering signature is often marked by large timing and size uncertainties, and item-3, the advanced causal inference, is in fact limited to clustered impacts that clearly predate major mass extinctions. The multi-impact lag-time pattern is particularly clear in the Late Triassic, when the largest (100 km diameter) Manicouagan crater was possibly concurrent with the end-Carnian extinction (or with the late Norian tetrapod turnover on an alternative time scale). The relatively small crater sizes and cratonic (crystalline rock basement) setting of these two craters further suggest the strongly insufficient extraterrestrial trigger of worldwide environmental traumas. However, to discuss the kill potential of impact events in a more robust fashion, their location and timing, vulnerability factors, especially target geology and palaeogeography in the context of associated climate-active volatile fluxes, should to be rigorously assessed. The current lack of conclusive impact evidence synchronous with most mass extinctions may still be somewhat misleading due to the predicted large set of undiscovered craters, particularly in light of the obscured record of oceanic impact events
Trends and overall survival after combined liver resection and thermal ablation of colorectal liver metastases:a nationwide population-based propensity score-matched study
Background: In colorectal liver metastases (CRLM) patients, combination of liver resection and ablation permit a more parenchymal-sparing approach. This study assessed trends in use of combined resection and ablation, outcomes, and overall survival (OS). Methods: This population-based study included all CRLM patients who underwent liver resection between 2014 and 2022. To assess OS, data was linked to two databases containing date of death for patients treated between 2014 and 2018. Hospital variation in the use of combined minor liver resection and ablation versus major liver resection alone in patients with 2–3 CRLM and ≤3 cm was assessed. Propensity score matching (PSM) was applied to evaluate outcomes. Results: This study included 3593 patients, of whom 1336 (37.2%) underwent combined resection and ablation. Combined resection increased from 31.7% in 2014 to 47.9% in 2022. Significant hospital variation (range 5.9–53.8%) was observed in the use of combined minor liver resection and ablation. PSM resulted in 1005 patients in each group. Major morbidity was not different (11.6% vs. 5%, P = 1.00). Liver failure occurred less often after combined resection and ablation (1.9% vs. 0.6%, P = 0.017). Five-year OS rates were not different (39.3% vs. 33.9%, P = 0.145). Conclusion: Combined resection and ablation should be available and considered as an alternative to resection alone in any patient with multiple metastases.</p
How to move ionized gas: an introduction to the dynamics of HII regions
This review covers the dynamic processes that are important in the evolution
and structure of galactic HII regions, concentrating on an elementary
presentation of the physical concepts and recent numerical simulations of HII
region evolution in a non-uniform medium.
The contents are as follows:
(1) The equations (Euler equations; Radiative transfer; Rate equations; How
to avoid the dynamics; How to avoid the atomic physics).
(2) Physical concepts (Static photoionization equilibrium; Ionization front
propagation; Structure of a D-type front; Photoablation flows; Other
ingredients - Stellar winds, Radiation pressure, Magnetic fields,
Instabilities).
(3) HII region evolution (Early phases: hypercompact and ultracompact
regions; Later phases: compact and extended regions; Clumps and turbulence).Comment: To be published as a chapter in 'Diffuse Matter from Star Forming
Regions to Active Galaxies' - A volume Honouring John Dyson. Eds. T. W.
Harquist, J. M. Pittard and S. A. E. G. Falle. 25 pages, 7 figures. Some
figures degraded to meet size restriction. Full-resolution version available
at http://www.ifront.org/wiki/Dyson_Festschrift_Chapte
Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility
Glaucoma is a multi-factorial blinding disease in which genetic factors play an important role. Elevated intraocular pressure is a highly heritable risk factor for primary open angle glaucoma and currently the only target for glaucoma therapy. Our study helps to better understand underlying genetic and molecular mechanisms that regulate intraocular pressure, and identifies a new candidate gene, Cacna2d1, that modulates intraocular pressure and a promising therapeutic, pregabalin, which binds to CACNA2D1 protein and lowers intraocular pressure significantly. Because our study utilizes a genetically diverse population of mice with kno
Dose finding study for unilobar radioembolization using holmium-166 microspheres to improve resectability in patients with HCC: the RALLY protocol
Background: High dose unilobar radioembolization (also termed ‘radiation lobectomy’)—the transarterial unilobar infusion of radioactive microspheres as a means of controlling tumour growth while concomitantly inducing future liver remnant hypertrophy—has recently gained interest as induction strategy for surgical resection. Prospective studies on the safety and efficacy of the unilobar radioembolization-surgery treatment algorithm are lacking. The RALLY study aims to assess the safety and toxicity profile of holmium-166 unilobar radioembolization in patients with hepatocellular carcinoma ineligible for surgery due to insufficiency of the future liver remnant. Methods: The RALLY study is a multicenter, interventional, non-randomized, open-label, non-comparative safety study. Patients with hepatocellular carcinoma who are considered ineligible for surgery due to insufficiency of the future liver remnant (< 2.7%/min/m2 on hepatobiliary iminodiacetic acid scan will be included. A classical 3 + 3 dose escalation model will be used, enrolling three to six patients in each cohort. The primary objective is to determine the maximum tolerated treated non-tumourous liver-absorbed dose (cohorts of 50, 60, 70 and 80 Gy). Secondary objectives are to evaluate dose–response relationships, to establish the safety and feasibility of surgical resection following unilobar radioembolization, to assess quality of life, and to generate a biobank. Discussion: This will be the first clinical study to assess the unilobar radioembolization-surgery treatment algorithm and may serve as a stepping stone towards its implementation in routine clinical practice. Trial registration: Netherlands Trial Register NL8902 , registered on 2020–09-15
- …