1,554 research outputs found

    Extending fragment-based free energy calculations with library Monte Carlo simulation: Annealing in interaction space

    Get PDF
    Pre-calculated libraries of molecular fragment configurations have previously been used as a basis for both equilibrium sampling (via "library-based Monte Carlo") and for obtaining absolute free energies using a polymer-growth formalism. Here, we combine the two approaches to extend the size of systems for which free energies can be calculated. We study a series of all-atom poly-alanine systems in a simple dielectric "solvent" and find that precise free energies can be obtained rapidly. For instance, for 12 residues, less than an hour of single-processor is required. The combined approach is formally equivalent to the "annealed importance sampling" algorithm; instead of annealing by decreasing temperature, however, interactions among fragments are gradually added as the molecule is "grown." We discuss implications for future binding affinity calculations in which a ligand is grown into a binding site

    Efficient equilibrium sampling of all-atom peptides using library-based Monte Carlo

    Get PDF
    We applied our previously developed library-based Monte Carlo (LBMC) to equilibrium sampling of several implicitly solvated all-atom peptides. LBMC can perform equilibrium sampling of molecules using the pre-calculated statistical libraries of molecular-fragment configurations and energies. For this study, we employed residue-based fragments distributed according to the Boltzmann factor of the OPLS-AA forcefield describing the individual fragments. Two solvent models were employed: a simple uniform dielectric and the Generalized Born/Surface Area (GBSA) model. The efficiency of LBMC was compared to standard Langevin dynamics (LD) using three different statistical tools. The statistical analyses indicate that LBMC is more than 100 times faster than LD not only for the simple solvent model but also for GBSA.Comment: 5 figure

    Amphiphilic Degradable Polymer/Hydroxyapatite Composites as Smart Bone Tissue Engineering Scaffolds: A Dissertation

    Get PDF
    Over 600,000 bone-grafting operations are performed each year in the United States. The majority of the bone used for these surgeries comes from autografts that are limited in quantity or allografts with high failure rates. Current synthetic bone grafting materials have poor mechanical properties, handling characteristics, and bioactivity. The goal of this dissertation was to develop a clinically translatable bone tissue engineering scaffold with improved handling characteristics, bioactivity, and smart delivery modalities. We hypothesized that this could be achieved through the rational selection of Food and Drug Administration (FDA) approved materials that blend favorably with hydroxyapatite (HA), the principle mineral component in bone. This dissertation describes the development of smart bone tissue engineering scaffolds composed of the biodegradable amphiphilic polymer poly(D,L-lactic acid-co-ethylene glycol-co- D,L-lactic acid) (PELA) and HA. Electrospun nanofibrous HA-PELA scaffolds exhibited improved handling characteristics and bioactivity over conventional HApoly( D,L-lactic acid) composites. Electrospun HA-PELA was hydrophilic, elastic, stiffened upon hydration, and supported the attachment and osteogenic differentiation of rat bone marrow stromal cells (MSCs). These in vitro properties translated into robust bone formation in vivo using a critical-size femoral defect model in rats. Spiral-wrapped HA-PELA scaffolds, loaded with MSCs or a lowdose of recombinant human bone morphogenetic protein-2, templated bone formation along the defect. As an alternate approach, PELA and HA-PELA were viii rapid prototyped into three-dimensional (3-D) macroporous scaffolds using a consumer-grade 3-D printer. These 3-D scaffolds have differential cell adhesion characteristics, swell and stiffen upon hydration, and exhibit hydration-induced self-fixation in a simulated confined defect. HA-PELA also exhibits thermal shape memory behavior, enabling the minimally invasive delivery and rapid (\u3e3 sec) shape recovery of 3-D scaffolds at physiologically safe temperatures (~ 50ºC). Overall, this dissertation demonstrates how the rational selection of FDA approved materials with synergistic interactions results in smart biomaterials with high potential for clinical translation

    The Role of the Dielectric Barrier in Narrow Biological Channels: a Novel Composite Approach to Modeling Single-channel Currents

    Get PDF
    A composite continuum theory for calculating ion current through a protein channel of known structure is proposed, which incorporates information about the channel dynamics. The approach is utilized to predict current through the Gramicidin A ion channel, a narrow pore in which the applicability of conventional continuum theories is questionable. The proposed approach utilizes a modified version of Poisson-Nernst-Planck (PNP) theory, termed Potential-of-Mean-Force-Poisson-Nernst-Planck theory (PMFPNP), to compute ion currents. As in standard PNP, ion permeation is modeled as a continuum drift-diffusion process in a self-consistent electrostatic potential. In PMFPNP, however, information about the dynamic relaxation of the protein and the surrounding medium is incorporated into the model of ion permeation by including the free energy of inserting a single ion into the channel, i.e., the potential of mean force along the permeation pathway. In this way the dynamic flexibility of the channel environment is approximately accounted for. The PMF profile of the ion along the Gramicidin A channel is obtained by combining an equilibrium molecular dynamics (MD) simulation that samples dynamic protein configurations when an ion resides at a particular location in the channel with a continuum electrostatics calculation of the free energy. The diffusion coefficient of a potassium ion within the channel is also calculated using the MD trajectory. Therefore, except for a reasonable choice of dielectric constants, no direct fitting parameters enter into this model. The results of our study reveal that the channel response to the permeating ion produces significant electrostatic stabilization of the ion inside the channel. The dielectric self-energy of the ion remains essentially unchanged in the course of the MD simulation, indicating that no substantial changes in the protein geometry occur as the ion passes through it. Also, the model accounts for the experimentally observed saturation of ion current with increase of the electrolyte concentration, in contrast to the predictions of standard PNP theory

    Application of Multimodel Method of Elasto-Plastic Analysis for the Multilevel Computation of Structures

    Get PDF
    Creation of hierarchical sequence of the plastic and viscoplastic models according to different levels of structure approximations is considered. Developed strategy of multimodel analysis, which consists of creation of the inelastic models library, determination of selection criteria system and caring out of multivariant sequential clarifying computations, is described. Application of the multimodel approach in numerical computations has demonstrated possibility of reliable prediction of stress-strain response under wide variety of combined nonproportional loading

    Retail investor attention and the limit order book: Intraday analysis of attention-based trading

    Get PDF
    We are the first to examine how intraday changes in retail investor attention, measured by hourly Google searches, affect trading activity and informativeness of trades. High levels of Google search activity are followed in the next hour by more intensive trading in all stocks. The increased trading activity is initiated by retail investors as evidenced by the reduced size of new orders. After googling a company, retail investors do not become informed in the traditional sense; rather, they act as noise traders, who mistake noise for information, as their orders are picked off by truly informed traders
    • …
    corecore