23 research outputs found
Multimessenger gamma-ray and neutrino coincidence alerts using hawc and icecube subthreshold data
The High Altitude Water Cerenkov (HAWC) and IceCube observatories, through the Astrophysical Multimessenger Observatory Network (AMON) framework, have developed a multimessenger joint search for extragalactic astrophysical sources. This analysis looks for sources that emit both cosmic neutrinos and gamma rays that are produced in photohadronic or hadronic interactions. The AMON system is running continuously, receiving subthreshold data (i.e., data that are not suited on their own to do astrophysical searches) from HAWC and IceCube, and combining them in real time. Here we present the analysis algorithm, as well as results from archival data collected between 2015 June and 2018 August, with a total live time of 3.0 yr. During this period we found two coincident events that have a false-alarm rate (FAR) of <1 coincidence yr-1, consistent with the background expectations. The real-time implementation of the analysis in the AMON system began on 2019 November 20 and issues alerts to the community through the Gamma-ray Coordinates Network with an FAR threshold of <4 coincidences yr-1
Recommended from our members
All-sky Measurement of the Anisotropy of Cosmic Rays at 10 TeV and Mapping of the Local Interstellar Magnetic Field
We present the first full-sky analysis of the cosmic ray arrival direction distribution with data collected by the High-Altitude Water Cherenkov and IceCube observatories in the northern and southern hemispheres at the same median primary particle energy of 10 TeV. The combined sky map and angular power spectrum largely eliminate biases that result from partial sky coverage and present a key to probe into the propagation properties of TeV cosmic rays through our local interstellar medium and the interaction between the interstellar and heliospheric magnetic fields. From the map, we determine the horizontal dipole components of the anisotropy δ 0h = 9.16 ×10-4 and δ 6h = 7.25 ×10-4 (±0.04 × 10-4). In addition, we infer the direction (229.°2 ± 3.°5 R.A., 11.°4 ± 3.°0 decl.) of the interstellar magnetic field from the boundary between large-scale excess and deficit regions from which we estimate the missing corresponding vertical dipole component of the large-scale anisotropy to be δN ∼ -3.97+1.0-2.0 × 10-4
Recommended from our members
All-sky Measurement of the Anisotropy of Cosmic Rays at 10 TeV and Mapping of the Local Interstellar Magnetic Field
We present the first full-sky analysis of the cosmic ray arrival direction distribution with data collected by the High-Altitude Water Cherenkov and IceCube observatories in the northern and southern hemispheres at the same median primary particle energy of 10 TeV. The combined sky map and angular power spectrum largely eliminate biases that result from partial sky coverage and present a key to probe into the propagation properties of TeV cosmic rays through our local interstellar medium and the interaction between the interstellar and heliospheric magnetic fields. From the map, we determine the horizontal dipole components of the anisotropy δ 0h = 9.16 ×10 -4 and δ 6h = 7.25 ×10 -4 (±0.04 × 10 -4 ). In addition, we infer the direction (229.°2 ± 3.°5 R.A., 11.°4 ± 3.°0 decl.) of the interstellar magnetic field from the boundary between large-scale excess and deficit regions from which we estimate the missing corresponding vertical dipole component of the large-scale anisotropy to be δN ∼ -3.97 +1.0-2.0 × 10 -4
Recommended from our members
Observation of small-scale anisotropy in the arrival direction distribution of TeV cosmic rays with HAWC
The High-Altitude Water Cherenkov (HAWC) Observatory is sensitive to gamma rays and charged cosmic rays at TeV energies. The detector is still under construction, but data acquisition with the partially deployed detector started in 2013. An analysis of the cosmic-ray arrival direction distribution based on 4.9 × 1010 events recorded between 2013 June and 2014 February shows anisotropy at the 10-4 level on angular scales of about 10°. The HAWC cosmic-ray sky map exhibits three regions of significantly enhanced cosmic-ray flux; two of these regions were first reported by the Milagro experiment. A third region coincides with an excess recently reported by the ARGO-YBJ experiment. An angular power spectrum analysis of the sky shows that all terms up to l = 15 contribute significantly to the excesses
Recommended from our members
The HAWC Gamma-Ray Observatory: Observations of Cosmic Rays
We describe measurements of GeV and TeV cosmic rays with the High-Altitude
Water Cherenkov Gamma-Ray Observatory, or HAWC. The measurements include the
observation of the shadow of the moon; the observation of small-scale and
large-scale angular clustering of the TeV cosmic rays; the prospects for
measurement of transient solar events with HAWC; and the observation of Forbush
decreases with the HAWC engineering array and HAWC-30
Recommended from our members
The HAWC Gamma-Ray Observatory: Sensitivity to Steady and Transient Sources of Gamma Rays
The High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory is designed to
record air showers produced by cosmic rays and gamma rays between 100 GeV and
100 TeV. Because of its large field of view and high livetime, HAWC is
well-suited to measure gamma rays from extended sources, diffuse emission, and
transient sources. We describe the sensitivity of HAWC to emission from the
extended Cygnus region as well as other types of galactic diffuse emission;
searches for flares from gamma-ray bursts and active galactic nuclei; and the
first measurement of the Crab Nebula with HAWC-30