8 research outputs found

    Thin-shell plastic lenses for space and laboratory applications

    Get PDF
    We have identified an inexpensive, readily available, mechanically stable, extremely smooth, elastic, and mechanically uniform plastic suitable for thin film X-ray optics. Polyethylene terephthalate (PET) is easily deformed without losing its elastic properties or surface smoothness. Most important, PET can be coated with mono- or multilayers that reflect X-rays at grazing incidence. We have used these properties to produce X-ray optics made either as a concentric nest of cylinders or as a spiral. We have produced accurately formed shells in precisely machined vacuum mandresl or used a pin and wheel structure to form a continuously wound spiral. The wide range of medical, industrial and scientific applications for our technology includes: a monochromatic X-ray collimater for medical diagnostics, a relay optic to transport an X-ray beam from the target in a scanning electron microscop0e to a lithium-drifted silicon and microcalorimeter detectors and a satellite mounted telescope to collect celestial X-rays. A wide variety of mono- and multilayer coatings allow X-rays up to ~100 keV to be reflected. Our paper presents data from a variety of diagnostic measurements on the properties of the PET foil and imaging results form single- and multi-shell lenses

    Thin-shell plastic lenses for space and laboratory applications

    Get PDF
    We have identified an inexpensive, readily available, mechanically stable, extremely smooth, elastic, and mechanically uniform plastic suitable for thin film X-ray optics. Polyethylene terephthalate (PET) is easily deformed without losing its elastic properties or surface smoothness. Most important, PET can be coated with mono- or multilayers that reflect X-rays at grazing incidence. We have used these properties to produce X-ray optics made either as a concentric nest of cylinders or as a spiral. We have produced accurately formed shells in precisely machined vacuum mandresl or used a pin and wheel structure to form a continuously wound spiral. The wide range of medical, industrial and scientific applications for our technology includes: a monochromatic X-ray collimater for medical diagnostics, a relay optic to transport an X-ray beam from the target in a scanning electron microscop0e to a lithium-drifted silicon and microcalorimeter detectors and a satellite mounted telescope to collect celestial X-rays. A wide variety of mono- and multilayer coatings allow X-rays up to ~100 keV to be reflected. Our paper presents data from a variety of diagnostic measurements on the properties of the PET foil and imaging results form single- and multi-shell lenses

    A single stage adiabatic demagnetization refrigerator for testing X-ray microcalorimeters

    No full text
    A single stage Adiabatic Demagnetization Refrigerator (ADR), has been set-up at the X-ray Astronomy Calibration and Testing (XACT) facility of INAF - Osservatorio Astronomico di Palermo G.S. Vaiana, for the development and testing of cryogenic X-ray detectors for laboratory and astrophysical applications. The ADR allows to cool detectors at temperatures below 40 mK and to maintain them at constant operating temperature for many hours. We describe the design and construction of the ADR and present test results and performance

    Calibration of the XRT-SOLARB flat mirror samples at the XACT Facility of INAF-OAPA

    No full text
    The X-Ray Telescope (XRT) experiment on-board the Japanese satellite SOLAR-B (launch in 2006) is equipped with a modified Wolter I grazing incidence X-ray telescope (focal length 2700 mm) to image the full Sun at ~ 1.5" angular resolution onto a 2048 x 2048 back illuminated CCD focal plane detector. The X-ray telescope consisting of one single reflecting shell is coated with ion beam sputtered Iridium over a binding layer of Chromium to provide nearly 5 square centimetres effective area at 60 Å. We present preliminary results of X-ray calibrations of the XRT flat mirror samples performed at the X-ray Astronomy Calibration and Testing (XACT) facility of INAF-OAPA. We describe the instrumental set-up, the adopted measurement technique, and present the measured reflectivity vs. angle of incidence at few energies

    Calibration of the XRT-SOLARB flight filters at the XACT facility of INAF-OAPA

    No full text
    The X-Ray Telescope (XRT) experiment on-board the Japanese satellite SOLAR-B (launch in 2006) aimed at providing full Sun field of view at∼1.5” angular resolution, will be equipped with two wheels of focal-plane filters to select spectral features of X-ray emission from the Solar corona, and a front-end filter to significantly reduce the visible light contamination. We present the results of the X-ray calibrations of the XRT flight filters performed at the X-ray Astronomy Calibration and Testing (XACT) facility of INAF-OAPA. We describe the instrumental set-up, the adopted measurement technique, and present the transmission vs. energy and position measurements

    Everolimus Plus Exemestane in Advanced Breast Cancer: Safety Results of the BALLET Study on Patients Previously Treated Without and with Chemotherapy in the Metastatic Setting

    No full text
    corecore