137 research outputs found

    Evolutionary Interactions between N-Linked Glycosylation Sites in the HIV-1 Envelope

    Get PDF
    The addition of asparagine (N)-linked polysaccharide chains (i.e., glycans) to the gp120 and gp41 glycoproteins of human immunodeficiency virus type 1 (HIV-1) envelope is not only required for correct protein folding, but also may provide protection against neutralizing antibodies as a “glycan shield.” As a result, strong host-specific selection is frequently associated with codon positions where nonsynonymous substitutions can create or disrupt potential N-linked glycosylation sites (PNGSs). Moreover, empirical data suggest that the individual contribution of PNGSs to the neutralization sensitivity or infectivity of HIV-1 may be critically dependent on the presence or absence of other PNGSs in the envelope sequence. Here we evaluate how glycan–glycan interactions have shaped the evolution of HIV-1 envelope sequences by analyzing the distribution of PNGSs in a large-sequence alignment. Using a “covarion”-type phylogenetic model, we find that the rates at which individual PNGSs are gained or lost vary significantly over time, suggesting that the selective advantage of having a PNGS may depend on the presence or absence of other PNGSs in the sequence. Consequently, we identify specific interactions between PNGSs in the alignment using a new paired-character phylogenetic model of evolution, and a Bayesian graphical model. Despite the fundamental differences between these two methods, several interactions are jointly identified by both. Mapping these interactions onto a structural model of HIV-1 gp120 reveals that negative (exclusive) interactions occur significantly more often between colocalized glycans, while positive (inclusive) interactions are restricted to more distant glycans. Our results imply that the adaptive repertoire of alternative configurations in the HIV-1 glycan shield is limited by functional interactions between the N-linked glycans. This represents a potential vulnerability of rapidly evolving HIV-1 populations that may provide useful glycan-based targets for neutralizing antibodies

    An Evolutionary-Network Model Reveals Stratified Interactions in the V3 Loop of the HIV-1 Envelope

    Get PDF
    The third variable loop (V3) of the human immunodeficiency virus type 1 (HIV-1) envelope is a principal determinant of antibody neutralization and progression to AIDS. Although it is undoubtedly an important target for vaccine research, extensive genetic variation in V3 remains an obstacle to the development of an effective vaccine. Comparative methods that exploit the abundance of sequence data can detect interactions between residues of rapidly evolving proteins such as the HIV-1 envelope, revealing biological constraints on their variability. However, previous studies have relied implicitly on two biologically unrealistic assumptions: (1) that founder effects in the evolutionary history of the sequences can be ignored, and; (2) that statistical associations between residues occur exclusively in pairs. We show that comparative methods that neglect the evolutionary history of extant sequences are susceptible to a high rate of false positives (20%–40%). Therefore, we propose a new method to detect interactions that relaxes both of these assumptions. First, we reconstruct the evolutionary history of extant sequences by maximum likelihood, shifting focus from extant sequence variation to the underlying substitution events. Second, we analyze the joint distribution of substitution events among positions in the sequence as a Bayesian graphical model, in which each branch in the phylogeny is a unit of observation. We perform extensive validation of our models using both simulations and a control case of known interactions in HIV-1 protease, and apply this method to detect interactions within V3 from a sample of 1,154 HIV-1 envelope sequences. Our method greatly reduces the number of false positives due to founder effects, while capturing several higher-order interactions among V3 residues. By mapping these interactions to a structural model of the V3 loop, we find that the loop is stratified into distinct evolutionary clusters. We extend our model to detect interactions between the V3 and C4 domains of the HIV-1 envelope, and account for the uncertainty in mapping substitutions to the tree with a parametric bootstrap

    Transmitted Drug Resistance in the CFAR Network of Integrated Clinical Systems Cohort: Prevalence and Effects on Pre-Therapy CD4 and Viral Load

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) genomes often carry one or more mutations associated with drug resistance upon transmission into a therapy-naĂŻve individual. We assessed the prevalence and clinical significance of transmitted drug resistance (TDR) in chronically-infected therapy-naĂŻve patients enrolled in a multi-center cohort in North America. Pre-therapy clinical significance was quantified by plasma viral load (pVL) and CD4+ cell count (CD4) at baseline. NaĂŻve bulk sequences of HIV-1 protease and reverse transcriptase (RT) were screened for resistance mutations as defined by the World Health Organization surveillance list. The overall prevalence of TDR was 14.2%. We used a Bayesian network to identify co-transmission of TDR mutations in clusters associated with specific drugs or drug classes. Aggregate effects of mutations by drug class were estimated by fitting linear models of pVL and CD4 on weighted sums over TDR mutations according to the Stanford HIV Database algorithm. Transmitted resistance to both classes of reverse transcriptase inhibitors was significantly associated with lower CD4, but had opposing effects on pVL. In contrast, position-specific analyses of TDR mutations revealed substantial effects on CD4 and pVL at several residue positions that were being masked in the aggregate analyses, and significant interaction effects as well. Residue positions in RT with predominant effects on CD4 or pVL (D67 and M184) were re-evaluated in causal models using an inverse probability-weighting scheme to address the problem of confounding by other mutations and demographic or risk factors. We found that causal effect estimates of mutations M184V/I ( pVL) and D67N/G ( and pVL) were compensated by K103N/S and K219Q/E/N/R. As TDR becomes an increasing dilemma in this modern era of highly-active antiretroviral therapy, these results have immediate significance for the clinical management of HIV-1 infections and our understanding of the ongoing adaptation of HIV-1 to human populations

    Charmed meson decay constants in three-flavor lattice QCD

    Full text link
    We present the first lattice QCD calculation with realistic sea quark content of the D^+ meson decay constant f_{D^+}. We use the MILC Collaboration's publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). We obtain f_{D^+} = 201 +/- 3 +/- 17 MeV, where the errors are statistical and a combination of systematic errors. We also obtain f_{D_s} = 249 +/- 3 +/- 16 MeV for the D_s meson.Comment: note added on recent CLEO measurement; PRL versio

    Adaptation to human populations is revealed by within-host polymorphisms

    Get PDF
    CD8 Ăž cytotoxic T-lymphocytes (CTLs) perform a critical role in the immune control of viral infections, including those caused by human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV). As a result, genetic variation at CTL epitopes is strongly influenced by host-specific selection for either escape from the immune response, or reversion due to the replicative costs of escape mutations in the absence of CTL recognition. Under strong CTL-mediated selection, codon positions within epitopes may immediately ''toggle'' in response to each host, such that genetic variation in the circulating virus population is shaped by rapid adaptation to immune variation in the host population. However, this hypothesis neglects the substantial genetic variation that accumulates in virus populations within hosts. Here, we evaluate this quantity for a large number of HIV-1-(n ! 3,000) and HCV-infected patients (n ! 2,600) by screening bulk RT-PCR sequences for sequencing ''mixtures'' (i.e., ambiguous nucleotides), which act as site-specific markers of genetic variation within each host. We find that nonsynonymous mixtures are abundant and significantly associated with codon positions under host-specific CTL selection, which should deplete within-host variation by driving the fixation of the favored variant. Using a simple model, we demonstrate that this apparently contradictory outcome can be explained by the transmission of unfavorable variants to new hosts before they are removed by selection, which occurs more frequently when selection and transmission occur on similar time scales. Consequently, the circulating virus population is shaped by the transmission rate and the disparity in selection intensities for escape or reversion as much as it is shaped by the immune diversity of the host population, with potentially serious implications for vaccine design

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference

    Lithological influences on contemporary and long-term regolith weathering at the Luquillo Critical Zone Observatory

    Get PDF
    Lithologic differences give rise to the differential weatherability of the Earth’s surface and globally variable silicate weathering fluxes, which provide an important negative feedback on climate over geologic timescales. To isolate the influence of lithology on weathering rates and mechanisms, we compare two nearby catchments in the Luquillo Critical Zone Observatory in Puerto Rico, which have similar climate history, relief and vegetation, but differ in bedrock lithology. Regolith and pore water samples with depth were collected from two ridgetops and at three sites along a slope transect in the volcaniclastic Bisley catchment and compared to existing data from the granitic Río Icacos catchment. The depth variations of solid-state and pore water chemistry and quantitative mineralogy were used to calculate mass transfer (tau) and weathering solute profiles, which in turn were used to determine weathering mechanisms and to estimate weathering rates. Regolith formed on both lithologies is highly leached of most labile elements, although Mg and K are less depleted in the granitic than in the volcaniclastic profiles, reflecting residual biotite in the granitic regolith not present in the volcaniclastics. Profiles of both lithologies that terminate at bedrock corestones are less weathered at depth, near the rock-regolith interfaces. Mg fluxes in the volcaniclastics derive primarily from dissolution of chlorite near the rock-regolith interface and from dissolution of illite and secondary phases in the upper regolith, whereas in the granitic profile, Mg and K fluxes derive from biotite dissolution. Long-term mineral dissolution rates and weathering fluxes were determined by integrating mass losses over the thickness of solid-state weathering fronts, and are therefore averages over the timescale of regolith development. Resulting long-term dissolution rates for minerals in the volcaniclastic regolith include chlorite: 8.9 × 10‾¹⁴ mol m‾² s‾¹, illite: 2.1 × 10‾¹⁴ mol m‾² s‾¹ and kaolinite: 4.0 × 10‾¹⁴ mol m‾² s‾¹. Long-term weathering fluxes are several orders of magnitude lower in the granitic regolith than in the volcaniclastic, despite higher abundances of several elements in the granitic regolith. Contemporary weathering fluxes were determined from net (rain-corrected) solute profiles and thus represent rates over the residence time of water in the regolith. Contemporary weathering fluxes within the granitic regolith are similar to the long-term fluxes. In contrast, the long-term fluxes are faster than the contemporary fluxes in the volcaniclastic regolith. Contemporary fluxes in the granitic regolith are generally also slightly faster than in the volcaniclastic. The differences in weathering fluxes over space and time between these two watersheds indicate significant lithologic control of chemical weathering mechanisms and rates

    "To Tell the Story": Cultural Trauma and Holocaust Metanarrative

    Get PDF
    This article explores the aporia between the alleged inexplicability of the Holocaust and the wealth of narrative that has proceeded from the event in the years since 1945, proposing the existence of a generic Holocaust metanarrative that has been adopted and inscribed into Western cultural memory as the accepted framework for interpretation. Taking as a starting point the idea that culture itself has been somehow ‘ruptured’ in the wake of the Holocaust, this article explores the ways in which this rupture manifests itself, viewing the shattering impact of the Holocaust on the Western cultural imagination as macrocosmically comparable to the impact of psychic trauma on the individual survivor of the Holocaust. Just as an individual act of narration (the act of testimony) is believed to provide a cure for trauma, so a collective act of narration may hold the key to repairing the post-Holocaust cultural rupture. During the exploration of this process, it becomes apparent that cultural memory of the Holocaust is in fact informed by a metanarrative account that appears to offer the possibility of an engagement with the Holocaust, but which in fact acts as a screen between the event itself and the culture that would seek to memorialize it. Finally, this article explores the notion that the most appropriate narrative response is one that accepts the impossibility of its own position, rejecting the easy redemption offered by the assimilation of Holocaust metanarrative and instead inhabiting the dialectic between knowing and understanding that the Holocaust presents
    • …
    corecore