914 research outputs found

    Evidence for Intrinsic Redshifts in Normal Spiral Galaxies

    Full text link
    The Tully-Fisher Relationship (TFR) is utilized to identify anomalous redshifts in normal spiral galaxies. Three redshift anomalies are identified in this analysis: (1) Several clusters of galaxies are examined in which late type spirals have significant excess redshifts relative to early type spirals in the same clusters, (2) Galaxies of morphology similar to ScI galaxies are found to have a systematic excess redshift relative to the redshifts expected if the Hubble Constant is 72 km s-1 Mpc-1, (3) individual galaxies, pairs, and groups are identified which strongly deviate from the predictions of a smooth Hubble flow. These redshift deviations are significantly larger than can be explained by peculiar motions and TFR errors. It is concluded that the redshift anomalies identified in this analysis are consistent with previous claims for large non-cosmological (intrinsic) redshifts.Comment: Accepted for publication at Astrophysics&Space Science. 36 pages including 8 tables and 7 figure

    The Surroundings of Disturbed, Active Galaxies

    Get PDF
    The brightest apparent magnitude examples of ultra luminous infrared galaxies (ULIRG's) are studied here in X-ray, optical, infrared and radio wavelengths. It is is found that they have associated material reaching out to apparent diameters of the order of a degree on the sky. Gas, dust, X-ray material and quasars appear to be ejected from the active nuclei with all objects nearer than their redshift distances.Comment: 14 pages, Figs. 1-28 jpg and gif file

    Elektrostatska energija međudjelovanja i faktor 1.23

    Get PDF
    The factor F ≈ 1.23 has originally been found in the redshift of quasars. Recently, it has been found in very different physical phenomena: the life-time of muonium, the masses of elementary particles (leptons, quarks,...), the correlation of atomic weight (A) and atomic number (Z) and the correlation of the sum of masses of all orbiting bodies with the mass of the central body in gravitational systems. In this work, we describe further systems where the factor F appears, the distributions of electric charges. We consider the electrostatic interaction between various pairs of charge distributions: two uniformly charged spheres, a point charge and a uniformly charged sphere, two point charges, a point charge and an infinite uniform line charge, two parallel uniform infinite line charges and two infinite parallel plane charge distributions.Crveni su pomaci kvazara prvotno ukazali na faktor F ≈ 1.23. Nedavno se je našao i u vrlo različitim sustavima, uključujući poluživot muonija, mase elementarnih čestica (leptoni, kvarkovi, ...), odnos atomskih težina (A i atomskih brojeva (Z) i odnos zbroja svih kružećih masa s centralnom masom u gravitacijskim sustavima. U ovom radu opisujemo još neke sustave u kojima se također pojavljuje faktor F, a to su elektrostatski sustavi niza raspodjela električnih naboja: dvije jednoliko površinski nabijene kugle, točkast naboj i jednoliko nabijena kugla, dva točkasta naboja, točkast naboj i jednolika beskonačna pravocrtna raspodjela naboja, dvije usporedne jednolike beskonačne pravocrtne raspodjele naboja i dvije usporedne jednoliko nabijene ravnine

    Intrinsic Redshifts and the Tully-Fisher Distance Scale

    Full text link
    The Tully-Fisher relationship (TFR) has been shown to have a relatively small observed scatter of ~ +/-0.35 mag implying an intrinsic scatter < +/-0.30 mag. However, when the TFR is calibrated from distances derived from the Hubble relation for field galaxies scatter is consistently found to be +/-0.64 to +/-0.84 mag. This significantly larger scatter requires that intrinsic TFR scatter is actually much larger than +/-0.30 mag, that field galaxies have an intrinsic TFR scatter much larger than cluster spirals, or that field galaxies have a velocity dispersion relative to the Hubble flow in excess of 1000 km s-1. Each of these potential explanations faces difficulties contradicted by available data and the results of previous studies. An alternative explanation is that the measured redshifts of galaxies are composed of a cosmological redshift component predicted from the value of the Hubble Constant and a superimposed intrinsic redshift component previously identified in other studies. This intrinsic redshift component may exceed 5000 km s-1 in individual galaxies. In this alternative scenario a possible value for the Hubble Constant is 55-60 km s-1 Mpc-1.Comment: 15 pages, Astrophysics&Space Science - Accepted for publicatio

    The Wolf effect and the Redshift of Quasars

    Full text link
    We consider a simple model, based on currently accepted models for active galactic nuclei, for a quasi-stellar object (QSO or ``quasar'') and examine the influence that correlation- induced spectral changes (``The Wolf Effect'') may have upon the redshifts of the optical emission lines.Comment: 13 pages, 3 figures. To be published in J. European Optical Soc. A: Pure and Applied Optic

    Arp 302: Non-starburst Luminous Infrared Galaxies

    Get PDF
    Arp 302, a luminous infrared source (L_{IR} = 4.2x10^{11} Lsun), consisting of two spiral galaxies (VV340A and VV340B) with nuclear separation of 40'', has the highest CO luminosity known. Observations with the BIMA array at 5'' X 7'' resolution reveal that the CO emission is extended over 23.0 kpc in the edge-on spiral galaxy, VV340A, corresponding to 6.7x10^{10} Msun of H_2. In the companion face-on galaxy, VV340B, the CO emission is extended over ~10.0 kpc, with 1.1x10^{10} Msun of H_2. The large CO extent is in strong contrast to starburst systems, such as Arp 220, in which the CO extent is typically \le 1 kpc. Furthermore, LIR/ML_{IR}/M(H_2) is found to be \le 6.0 Lsun/Msun throughout both galaxies. Thus the high IR luminosity of Arp 302 is apparently not due to starbursts in the nuclear regions, but is due to its unusually large amount of molecular gas forming stars at a rate similar to giant molecular clouds in the Milky Way disk. Arp 302 consists of a pair of very gas-rich spiral galaxies that may be interacting and in a phase before a likely onset of starbursts.Comment: AAS Latex plus two postscript figures. ApJ Letters (accepted
    corecore