95 research outputs found

    The Dwarf Nova PQ Andromedae

    Full text link
    We report a photometric study of the WZ Sagittae-type dwarf nova PQ Andromedae. The light curve shows strong (0.05 mag full amplitude) signals with periods of 1263(1) and 634(1) s, and a likely double-humped signal with P=80.6(2) min. We interpret the first two as nonradial pulsation periods of the underlying white dwarf, and the last as the orbital period of the underlying binary. We estimate a distance of 150(50) pc from proper motions and the two standard candles available: the white dwarf and the dwarf-nova outburst. At this distance, the K magnitude implies that the secondary is probably fainter than any star on the main sequence -- indicating a mass below the Kumar limit at 0.075 M_sol. PQ And may be another "period bouncer", where evolution now drives the binary out to longer period.Comment: PDF, 13 pages, 2 figures; accepted, in press, to appear September 2005, PASP; more info at http://cba.phys.columbia.edu

    The Discovery of an Embedded Cluster of High-Mass Stars Near SGR 1900+14

    Get PDF
    Deep I-band imaging to approximately I = 26.5 of the soft gamma-ray repeater SGR 1900+14 region has revealed a compact cluster of massive stars located only a few arcseconds from the fading radio source thought to be the location of the SGR (Frail, Kulkarni, & Bloom 1999). This cluster was previously hidden in the glare of the pair of M5 supergiant stars (whose light was removed by PSF subtraction) proposed by Vrba et al. (1996) as likely associated with the SGR 1900+14. The cluster has at least 13 members within a cluster radius of approximately 0.6 pc, based on an estimated distance of 12-15 kpc. It is remarkably similar to a cluster found associated with SGR 1806-20 (Fuchs et al. 1999). That similar clusters have now been found at or near the positions of the two best-studied SGRs suggests that young neutron stars, thought to be responsible for the SGR phenomenon, have their origins in proximate compact clusters of massive stars.Comment: 5 pages, 3 figures, accepted Astrophysical Journal Letter

    THE CHANDRA VARIABLE GUIDE STAR CATALOG

    Get PDF
    Variable stars have been identified among the optical-wavelength light curves of guide stars used for pointing control of the Chandra X-ray Observatory. We present a catalog of these variable stars along with their light curves and ancillary data. Variability was detected to a lower limit of 0.02 mag amplitude in the 4000-10000 Å range using the photometrically stable Aspect Camera on board the Chandra spacecraft. The Chandra Variable Guide Star Catalog (VGUIDE) contains 827 stars, of which 586 are classified as definitely variable and 241 are identified as possibly variable. Of the 586 definite variable stars, we believe 319 are new variable star identifications. Types of variables in the catalog include eclipsing binaries, pulsating stars, and rotating stars. The variability was detected during the course of normal verification of each Chandra pointing and results from analysis of over 75,000 guide star light curves from the Chandra mission. The VGUIDE catalog represents data from only about 9 years of the Chandra mission. Future releases of VGUIDE will include newly identified variable guide stars as the mission proceeds. An important advantage of the use of space data to identify and analyze variable stars is the relatively long observations that are available. The Chandra orbit allows for observations up to 2 days in length. Also, guide stars were often used multiple times for Chandra observations, so many of the stars in the VGUIDE catalog have multiple light curves available from various times in the mission. The catalog is presented as both online data associated with this paper and as a public Web interface. Light curves with data at the instrumental time resolution of about 2 s, overplotted with the data binned at 1 ks, can be viewed on the public Web interface and downloaded for further analysis. VGUIDE is a unique project using data collected during the mission that would otherwise be ignored. The stars available for use as Chandra guide stars are generally 6-11 mag and are commonly spectral types A and later. Due to the selection of guide stars entirely for positional convenience, this catalog avoids the possible bias of searching for variability in objects where it is to be expected. Statistics of variability compared to spectral type indicate the expected dominance of A-F stars as pulsators. Eclipsing binaries are consistently 20%-30% of the detected variables across all spectral types.United States. National Aeronautics and Space Administration (Smithsonian Astrophysical Observatory. Contract NAS8-03060)United States. National Aeronautics and Space Administration (Smithsonian Astrophysical Observatory. Contract SV3-73016
    corecore