5,845 research outputs found

    RF noise suppression using the photodielectric effect in semiconductors

    Get PDF
    Technique using photodielectric effect of semiconductor in high-Q superconductive cavity gives initial improvement of 2-4 db in signal-to-noise enhancement of conventional RF communication systems. Wide band signal plus noise can be transmitted through a narrow-band cavity due to parametric perturbation of the cavity frequency or phase

    System performance conclusions

    Get PDF
    The advantages and disadvantages of reducing power levels and using antennas with diameters smaller than 1 Km were evaluated if rectenna costs and land usage requirements become major factors, operating at 5800 megahertz should be considered. Three sequences (random, incoherent phasing, and concentric rings - center to edge) provided satisfactory performance in that the resultant sidelobe levels during startup/ shutdown were lower than the steady-state levels present during normal operations. Grating lobe peaks and scattered power levels were used to determine the array/subarray mechanical alignment requirements. The antenna alignment requirement is 1 min or 3 min depending on phase control configuration. System error parameters were defined to minimize scattered microwave power

    Smaller SPS system sizing tradeoffs

    Get PDF
    The solar power satellite and associated microwave system was reoptimized with larger antennas (at 2.45 GHz), reduced output powers, and smaller rectennas. Four constraints were considered: (1) the 23 mw/sq cm ionospheric limit; (2) a higher (54 mW/sq cm) ionospheric limit; (3) the 23 KW/sq cm thermal limit in the antenna; and (4) an improved thermal design allowing 33% additional waste heat. The differential costs in electricity for seven antenna/rectenna configurations operating at 2.45 GHz and five satellite systems operating at 5.8 GHz were calculated. It is concluded that a larger antenna/smaller rectenna configurations are economically feasible under certain conditions; a transmit antenna diameters should be limited to 1 to 1.5 Km for 2.45 GHz operation and .75 to 1.0 Km for 5.8 GHz; the present ionospheric limit of 23 mw/sq cm is probably too low and should be raised after ionospheric heating tests and studies are completed; the 5.8 GHz configurations are constrainted by antenna thermal limitations, rather than ionospheric limits; and multiple (two to four) antennas on a single solar satellite are recommended regardless of the particular antenna/rectenna configuration chosen

    Microwave system performance summary

    Get PDF
    The design of the microwave system for the solar power satellite is described. Design modifications recommended include changes in phase control to the power module level, a reduction in allowable amplitude jitter, the use of metal matrix waveguides, and sequences for startup/shutdown procedures. Investigations into reshaping the beam pattern to improve overall rectenna collection efficiency and improve sidelobe control are surveyed

    Polycomb group protein complexes exchange rapidly in living Drosophila

    Get PDF
    Fluorescence recovery after photobleaching (FRAP) microscopy was used to determine the kinetic properties of Polycomb group (PcG) proteins in whole living Drosophila organisms (embryos) and tissues (wing imaginal discs and salivary glands). PcG genes are essential genes in higher eukaryotes responsible for the maintenance of the spatially distinct repression of developmentally important regulators such as the homeotic genes. Their absence, as well as overexpression, causes transformations in the axial organization of the body. Although protein complexes have been isolated in vitro, little is known about their stability or exact mechanism of repression in vivo. We determined the translational diffusion constants of PcG proteins, dissociation constants and residence times for complexes in vivo at different developmental stages. In polytene nuclei, the rate constants suggest heterogeneity of the complexes. Computer simulations with new models for spatially distributed protein complexes were performed in systems showing both diffusion and binding equilibria, and the results compared with our experimental data. We were able to determine forward and reverse rate constants for complex formation. Complexes exchanged within a period of 1-10 minutes, more than an order of magnitude faster than the cell cycle time, ruling out models of repression in which access of transcription activators to the chromatin is limited and demonstrating that long-term repression primarily reflects mass-action chemical equilibria

    System for Improving Signal-to-noise Ratio of a Communication Signal

    Get PDF
    This invention relates to a system for use in a ground station radio communication receiver for improving the signal-to-noise ratio of weak signals received from distant spacecraft

    Electroexcitation of the Roper resonance from CLAS data

    Full text link
    The helicity amplitudes of the electroexcitation of the Roper resonance on proton are extracted at 1.7 < Q2 < 4.2 GeV2 from recent high precision JLab-CLAS cross sections data and longitudinally polarized beam asymmetry for pi+ electroproduction on protons. The analysis is made using two approaches, dispersion relations and unitary isobar model, which give consistent results. It is found that the transverse helicity amplitude for the gamma* p --> P11(1440) transition, which is large and negative at Q2=0, becomes large and positive at Q2 ~ 2 GeV2, and then drops slowly with Q2. Longitudinal helicity amplitude, that was previously found from CLAS data as large and positive at Q2=0.4,0.65 GeV2, drops with Q2. These results rule out the presentation of P11(1440) as a 3qG hybrid state, and provide strong evidence in favor of this resonance as a first radial excitation of the 3q ground state.Comment: 3 pages, 2 figures, Talk on the Workshop on "The Physics of Excited Nucleons", Bonn, Germany, October 200

    The energies and residues of the nucleon resonances N(1535) and N(1650)

    Get PDF
    We extract pole positions for the N(1535) and N(1650) resonances using two different models. The positions are determined from fits to different subsets of the existing πNπN\pi N\to\pi N, πNηN\pi N\to\eta N and γpηp\gamma p\to\eta p data and found to be 1515(10)--i85(15)MeV and 1660(10)--i65(10)MeV, when the data is described in terms of two poles. Sensitivity to the choice of fitted data is explored. The corresponding ππ\pi \pi and ηη\eta \eta residues of these poles are also extracted.Comment: 9 page

    Electromagnetic probe technique for fluid flow measurements

    Get PDF
    The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constant of the fluid is possible, several or even many fluids can be measured in the same flow stream. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans to solve this problem will be discussed herein

    Satellite power system: Concept development and evaluation program. Volume 3: Power transmission and reception. Technical summary and assessment

    Get PDF
    Efforts in the DOE/NASA concept development and evaluation program are discussed for the solar power satellite power transmission and reception system. A technical summary is provided together with a summary of system assessment activities. System options and system definition drivers are described. Major system assessment activities were in support of the reference system definition, solid state system studies, critical technology supporting investigations, and various system and subsystem tradeoffs. These activities are described together with reference system updates and alternative concepts for each of the subsystem areas. Conclusions reached as a result of the numerous analytical and experimental evaluations are presented. Remaining issues for a possible follow-on program are identified
    corecore