335 research outputs found
Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.
A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
A computational analysis of the dynamic roles of talin, Dok1, and PIPKI for integrin activation
Integrin signaling regulates cell migration and plays a pivotal role in
developmental processes and cancer metastasis. Integrin signaling has been
studied extensively and much data is available on pathway components and
interactions. Yet the data is fragmented and an integrated model is missing. We
use a rule-based modeling approach to integrate available data and test
biological hypotheses regarding the role of talin, Dok1 and PIPKI in integrin
activation. The detailed biochemical characterization of integrin signaling
provides us with measured values for most of the kinetics parameters. However,
measurements are not fully accurate and the cellular concentrations of
signaling proteins are largely unknown and expected to vary substantially
across different cellular conditions. By sampling model behaviors over the
physiologically realistic parameter range we find that the model exhibits only
two different qualitative behaviours and these depend mainly on the relative
protein concentrations, which offers a powerful point of control to the cell.
Our study highlights the necessity to characterize model behavior not for a
single parameter optimum, but to identify parameter sets that characterize
different signaling modes
Comparison of Gene Expression Profiles in Chromate Transformed BEAS-2B Cells
Hexavalent chromium [Cr(VI)] is a potent human carcinogen.
Occupational exposure has been associated with increased risk of respiratory
cancer. Multiple mechanisms have been shown to contribute to Cr(VI) induced
carcinogenesis, including DNA damage, genomic instability, and epigenetic
modulation, however, the molecular mechanism and downstream genes mediating
chromium's carcinogenicity remain to be elucidated.We established chromate transformed cell lines by chronic exposure of normal
human bronchial epithelial BEAS-2B cells to low doses of Cr(VI) followed by
anchorage-independent growth. These transformed cell lines not only
exhibited consistent morphological changes but also acquired altered and
distinct gene expression patterns compared with normal BEAS-2B cells and
control cell lines (untreated) that arose spontaneously in soft agar.
Interestingly, the gene expression profiles of six Cr(VI) transformed cell
lines were remarkably similar to each other yet differed significantly from
that of either control cell lines or normal BEAS-2B cells. A total of 409
differentially expressed genes were identified in Cr(VI) transformed cells
compared to control cells. Genes related to cell-to-cell junction were
upregulated in all Cr(VI) transformed cells, while genes associated with the
interaction between cells and their extracellular matrices were
down-regulated. Additionally, expression of genes involved in cell
proliferation and apoptosis were also changed.This study is the first to report gene expression profiling of Cr(VI)
transformed cells. The gene expression changes across individual chromate
exposed clones were remarkably similar to each other but differed
significantly from the gene expression found in anchorage-independent clones
that arose spontaneously. Our analysis identified many novel gene expression
changes that may contribute to chromate induced cell transformation, and
collectively this type of information will provide a better understanding of
the mechanism underlying chromate carcinogenicity
Controlling cell behavior through the design of polymer surfaces
Polymers have gained a remarkable place in the biomedical
fi eld as materials for the fabrication of various devices and
for tissue engineering applications. The initial acceptance or
rejection of an implantable device is dictated by the crosstalk
of the material surface with the bioentities present in the
physiological environment. Advances in microfabrication
and nanotechnology offer new tools to investigate the
complex signaling cascade induced by the components of
the extracellular matrix and consequently allow cellular
responses to be tailored through the mimicking of some
elements of the signaling paths. Patterning methods and
selective chemical modifi cation schemes at different length
scales can provide biocompatible surfaces that control
cellular interactions on the micrometer and sub-micrometer
scales on which cells are organized. In this review, the
potential of chemically and topographically structured
micro- and nanopolymer surfaces are discussed in hopes
of a better understanding of cellβbiomaterial interactions,
including the recent use of biomimetic approaches or
stimuli-responsive macromolecules. Additionally, the focus
will be on how the knowledge obtained using these surfaces
can be incorporated to design biocompatible materials for
various biomedical applications, such as tissue engineering,
implants, cell-based biosensors, diagnostic systems, and basic
cell biology. The review focusses on the research carried out
during the last decade.The research leading to these results has received partial funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. NMP4-SL-2009-229292 and by the FCT projects PTDC/FIS/68517/2006, PTDC/QUI/69263/2006, PTDC/FIS/68209/2006, and PTDC/QUI/68804/2006
Quantitative Deep Sequencing Reveals Dynamic HIV-1 Escape and Large Population Shifts during CCR5 Antagonist Therapy In Vivo
High-throughput sequencing platforms provide an approach for detecting rare HIV-1 variants and documenting more fully quasispecies diversity. We applied this technology to the V3 loop-coding region of env in samples collected from 4 chronically HIV-infected subjects in whom CCR5 antagonist (vicriviroc [VVC]) therapy failed. Between 25,000β140,000 amplified sequences were obtained per sample. Profound baseline V3 loop sequence heterogeneity existed; predicted CXCR4-using populations were identified in a largely CCR5-using population. The V3 loop forms associated with subsequent virologic failure, either through CXCR4 use or the emergence of high-level VVC resistance, were present as minor variants at 0.8β2.8% of baseline samples. Extreme, rapid shifts in population frequencies toward these forms occurred, and deep sequencing provided a detailed view of the rapid evolutionary impact of VVC selection. Greater V3 diversity was observed post-selection. This previously unreported degree of V3 loop sequence diversity has implications for viral pathogenesis, vaccine design, and the optimal use of HIV-1 CCR5 antagonists
- β¦