2,124 research outputs found

    Random beamforming OFDMA for future generation cellular communication systems

    Get PDF

    Layered random beamforming OFDMA with fair scheduling algorithms

    Get PDF

    Adaptive MIMO OFDMA for future generation cellular systems in a realistic outdoor environment

    Get PDF

    After Shelby County v. Holder, Can Independent Commissions Take the Place of Section 5 of the Voting Rights Act?

    Get PDF
    This Note traces the consequences of the Supreme Court’s decision in Shelby County v. Holder, which held unconstitutional the preclearance formula of the Voting Rights Act that required some states and counties to obtain federal authorization before changing voting procedures. Armour traces the history of the Voting Rights Act and the role independent commissions can play in ensuring that such facially neutral procedures do not have a disparate impact on minority communities. Armour advocates for independent commissions to take the place left empty by the Supreme Court’s rejection of the old preclearance formula suggesting that these commissions are a feasible way to effectively ensure citizens’ can vote without barriers

    Performance analysis of layered random beamforming OFMDA with feedback reduction

    Get PDF

    Link adaptation performance evaluation for a MIMO-OFDM physical layer in a realistic outdoor environment

    Get PDF

    Power efficient dynamic resource scheduling algorithms for LTE

    Get PDF

    The reversibility of sea ice loss in a state-of-the-art climate model

    Get PDF
    Rapid Arctic sea ice retreat has fueled speculation about the possibility of threshold (or ‘tipping point’) behavior and irreversible loss of the sea ice cover. We test sea ice reversibility within a state-of-the-art atmosphere–ocean global climate model by increasing atmospheric carbon dioxide until the Arctic Ocean becomes ice-free throughout the year and subsequently decreasing it until the initial ice cover returns. Evidence for irreversibility in the form of hysteresis outside the envelope of natural variability is explored for the loss of summer and winter ice in both hemispheres. We find no evidence of irreversibility or multiple ice-cover states over the full range of simulated sea ice conditions between the modern climate and that with an annually ice-free Arctic Ocean. Summer sea ice area recovers as hemispheric temperature cools along a trajectory that is indistinguishable from the trajectory of summer sea ice loss, while the recovery of winter ice area appears to be slowed due to the long response times of the ocean near the modern winter ice edge. The results are discussed in the context of previous studies that assess the plausibility of sea ice tipping points by other methods. The findings serve as evidence against the existence of threshold behavior in the summer or winter ice cover in either hemisphere

    Observations of transients and pulsars with LOFAR international stations

    Full text link
    The LOw FRequency ARray - LOFAR is a new radio telescope that is moving the science of radio pulsars and transients into a new phase. Its design places emphasis on digital hardware and flexible software instead of mechanical solutions. LOFAR observes at radio frequencies between 10 and 240 MHz where radio pulsars and many transients are expected to be brightest. Radio frequency signals emitted from these objects allow us to study the intrinsic pulsar emission and phenomena such as propagation effects through the interstellar medium. The design of LOFAR allows independent use of its stations to conduct observations of known bright objects, or wide field monitoring of transient events. One such combined software/hardware solution is called the Advanced Radio Transient Event Monitor and Identification System (ARTEMIS). It is a backend for both targeted observations and real-time searches for millisecond radio transients which uses Graphical Processing Unit (GPU) technology to remove interstellar dispersion and detect millisecond radio bursts from astronomical sources in real-time using a single LOFAR station.Comment: To appear in the proceedings of the Electromagnetic Radiation from Pulsars and Magnetars conference, Zielona Gora, 2012. 4 pages, 1 figur

    Chiral and Continuum Extrapolation of Partially-Quenched Lattice Results

    Full text link
    The vector meson mass is extracted from a large sample of partially quenched, two-flavor lattice QCD simulations. For the first time, discretisation, finite-volume and partial quenching artefacts are treated in a unified framework which is consistent with the low-energy behaviour of QCD. This analysis incorporates the leading infrared behaviour dictated by chiral effective field theory. As the two-pion decay channel cannot be described by a low-energy expansion alone, a highly-constrained model for the decay channel of the rho-meson is introduced. The latter is essential for extrapolating lattice results from the quark-mass regime where the rho is observed to be a physical bound state.Comment: 9 pages, 3 figures; revised version appearing in PL
    • 

    corecore