479 research outputs found

    PROTOGENE: turning amino acid alignments into bona fide CDS nucleotide alignments

    Get PDF
    We describe Protogene, a server that can turn a protein multiple sequence alignment into the equivalent alignment of the original gene coding DNA. Protogene relies on a pipeline where every initial protein sequence is BLASTed against RefSeq or NR. The annotation associated with potential matches is used to identify the gene sequence. This gene sequence is then aligned with the query protein using Exonerate in order to extract a coding nucleotide sequence matching the original protein. Protogene can handle protein fragments and will return every CDS coding for a given protein, even if they occur in different genomes. Protogene is available from

    The M-Coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods

    Get PDF
    The M-Coffee server is a web server that makes it possible to compute multiple sequence alignments (MSAs) by running several MSA methods and combining their output into one single model. This allows the user to simultaneously run all his methods of choice without having to arbitrarily choose one of them. The MSA is delivered along with a local estimation of its consistency with the individual MSAs it was derived from. The computation of the consensus multiple alignment is carried out using a special mode of the T-Coffee package [Notredame, Higgins and Heringa (T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000; 302: 205–217); Wallace, O'Sullivan, Higgins and Notredame (M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res. 2006; 34: 1692–1699)] Given a set of sequences (DNA or proteins) in FASTA format, M-Coffee delivers a multiple alignment in the most common formats. M-Coffee is a freeware open source package distributed under a GPL license and it is available either as a standalone package or as a web service from www.tcoffee.org

    Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee

    Get PDF
    Expresso is a multiple sequence alignment server that aligns sequences using structural information. The user only needs to provide sequences. The server runs BLAST to identify close homologues of the sequences within the PDB database. These PDB structures are used as templates to guide the alignment of the original sequences using structure-based sequence alignment methods like SAP or Fugue. The final result is a multiple sequence alignment of the original sequences based on the structural information of the templates. An advanced mode makes it possible to either upload private structures or specify which PDB templates should be used to model each sequence. Providing the suitable structural information is available, Expresso delivers sequence alignments with accuracy comparable with structure-based alignments. The server is available on http://www.tcoffee.or

    Parametric Sources for Chemicals and Gas Sensing

    Get PDF
    International audienceWe present our activities on the development of tunable optical parametric sources for gas sensing. In particular, we introduce the nested cavity OPO, and rapidly tunable OPOs based on aperiodic quasi-phase matching

    T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension

    Get PDF
    This article introduces a new interface for T-Coffee, a consistency-based multiple sequence alignment program. This interface provides an easy and intuitive access to the most popular functionality of the package. These include the default T-Coffee mode for protein and nucleic acid sequences, the M-Coffee mode that allows combining the output of any other aligners, and template-based modes of T-Coffee that deliver high accuracy alignments while using structural or homology derived templates. These three available template modes are Expresso for the alignment of protein with a known 3D-Structure, R-Coffee to align RNA sequences with conserved secondary structures and PSI-Coffee to accurately align distantly related sequences using homology extension. The new server benefits from recent improvements of the T-Coffee algorithm and can align up to 150 sequences as long as 10 000 residues and is available from both http://www.tcoffee.org and its main mirror http://tcoffee.crg.cat

    Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee

    Get PDF
    Expresso is a multiple sequence alignment server that aligns sequences using structural information. The user only needs to provide sequences. The server runs BLAST to identify close homologues of the sequences within the PDB database. These PDB structures are used as templates to guide the alignment of the original sequences using structure-based sequence alignment methods like SAP or Fugue. The final result is a multiple sequence alignment of the original sequences based on the structural information of the templates. An advanced mode makes it possible to either upload private structures or specify which PDB templates should be used to model each sequence. Providing the suitable structural information is available, Expresso delivers sequence alignments with accuracy comparable with structure-based alignments. The server is available on

    Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii

    Get PDF
    Background: Obesity is associated with increased health risk and has been associated with alterations in bacterial gut microbiota, with mainly a reduction in Bacteroidetes, but few data exist at the genus and species level. It has been reported that the Lactobacillus and Bifidobacterium genus representatives may have a critical role in weight regulation as an anti-obesity effect in experimental models and humans, or as a growth-promoter effect in agriculture depending on the strains. Objectives and methods: To confirm reported gut alterations and test whether Lactobacillus or Bifidobacterium species found in the human gut are associated with obesity or lean status, we analyzed the stools of 68 obese and 47 controls targeting Firmicutes, Bacteroidetes, Methanobrevibacter smithii, Lactococcus lactis, Bifidobacterium animalis and seven species of Lactobacillus by quantitative PCR (qPCR) and culture on a Lactobacillus-selective medium. Findings: In qPCR, B. animalis (odds ratio (OR) 0.63; 95% confidence interval (CI) 0.39-1.01; P = 0.056) and M. smithii (OR = 0.76; 95% CI 0.59-0.97; P = 0.03) were associated with normal weight whereas Lactobacillus reuteri (OR = 1.79; 95% CI 1.03-3.10; P = 0.04) was associated with obesity. Conclusion: The gut microbiota associated with human obesity is depleted in M. smithii. Some Bifidobacterium or Lactobacillus species were associated with normal weight (B. animalis) while others (L. reuteri) were associated with obesity. Therefore, gut microbiota composition at the species level is related to body weight and obesity, which might be of relevance for further studies and the management of obesity. These results must be considered cautiously because it is the first study to date that links specific species of Lactobacillus with obesity in humans. International Journal of Obesity (2012) 36, 817-825; doi:10.1038/ijo.2011.153; published online 9 August 201

    R-Coffee: a web server for accurately aligning noncoding RNA sequences

    Get PDF
    The R-Coffee web server produces highly accurate multiple alignments of noncoding RNA (ncRNA) sequences, taking into account predicted secondary structures. R-Coffee uses a novel algorithm recently incorporated in the T-Coffee package. R-Coffee works along the same lines as T-Coffee: it uses pairwise or multiple sequence alignment (MSA) methods to compute a primary library of input alignments. The program then computes an MSA highly consistent with both the alignments contained in the library and the secondary structures associated with the sequences. The secondary structures are predicted using RNAplfold. The server provides two modes. The slow/accurate mode is restricted to small datasets (less than 5 sequences less than 150 nucleotides) and combines R-Coffee with Consan, a very accurate pairwise RNA alignment method. For larger datasets a fast method can be used (RM-Coffee mode), that uses R-Coffee to combine the output of the three packages which combines the outputs from programs found to perform best on RNA (MUSCLE, MAFFT and ProbConsRNA). Our BRAliBase benchmarks indicate that the R-Coffee/Consan combination is one of the best ncRNA alignment methods for short sequences, while the RM-Coffee gives comparable results on longer sequences. The R-Coffee web server is available at http://www.tcoffee.org

    R-Coffee: a web server for accurately aligning noncoding RNA sequences

    Get PDF
    The R-Coffee web server produces highly accurate multiple alignments of noncoding RNA (ncRNA) sequences, taking into account predicted secondary structures. R-Coffee uses a novel algorithm recently incorporated in the T-Coffee package. R-Coffee works along the same lines as T-Coffee: it uses pairwise or multiple sequence alignment (MSA) methods to compute a primary library of input alignments. The program then computes an MSA highly consistent with both the alignments contained in the library and the secondary structures associated with the sequences. The secondary structures are predicted using RNAplfold. The server provides two modes. The slow/accurate mode is restricted to small datasets (less than 5 sequences less than 150 nucleotides) and combines R-Coffee with Consan, a very accurate pairwise RNA alignment method. For larger datasets a fast method can be used (RM-Coffee mode), that uses R-Coffee to combine the output of the three packages which combines the outputs from programs found to perform best on RNA (MUSCLE, MAFFT and ProbConsRNA). Our BRAliBase benchmarks indicate that the R-Coffee/Consan combination is one of the best ncRNA alignment methods for short sequences, while the RM-Coffee gives comparable results on longer sequences. The R-Coffee web server is available at http://www.tcoffee.org

    Monitoring Bacterial Community of Human Gut Microbiota Reveals an Increase in Lactobacillus in Obese Patients and Methanogens in Anorexic Patients

    Get PDF
    Background: Studies of the bacterial communities of the gut microbiota have revealed a shift in the ratio of Firmicutes and Bacteroidetes in obese patients. Determining the variations of microbial communities in feces may be beneficial for the identification of specific profiles in patients with abnormal weights. The roles of the archaeon Methanobrevibacter smithii and Lactobacillus species have not been described in these studies. Methods and Findings: We developed an efficient and robust real-time PCR tool that includes a plasmid-based internal control and allows for quantification of the bacterial divisions Bacteroidetes, Firmicutes, and Lactobacillus as well as the methanogen M. smithii. We applied this technique to the feces of 20 obese subjects, 9 patients with anorexia nervosa, and 20 normal-weight healthy controls. Our results confirmed a reduction in the Bacteroidetes community in obese patients (p<0.01). We found a significantly higher Lactobacillus species concentration in obese patients than in lean controls (p = 0.0197) or anorexic patients (p = 0.0332). The M. smithii concentration was much higher in anorexic patients than in the lean population (p = 0.0171). Conclusions: Lactobacillus species are widely used as growth promoters in the farm industry and are now linked to obesity in humans. The study of the bacterial flora in anorexic patients revealed an increase in M. smithii. This increase might represent an adaptive use of nutrients in this population
    corecore