48 research outputs found

    Vanishing Point Detection with Direct and Transposed Fast Hough Transform inside the neural network

    Get PDF
    In this paper, we suggest a new neural network architecture for vanishing point detection in images. The key element is the use of the direct and transposed Fast Hough Transforms separated by convolutional layer blocks with standard activation functions. It allows us to get the answer in the coordinates of the input image at the output of the network and thus to calculate the coordinates of the vanishing point by simply selecting the maximum. Besides, it was proved that calculation of the transposed Fast Hough Transform can be performed using the direct one. The use of integral operators enables the neural network to rely on global rectilinear features in the image, and so it is ideal for detecting vanishing points. To demonstrate the effectiveness of the proposed architecture, we use a set of images from a DVR and show its superiority over existing methods. Note, in addition, that the proposed neural network architecture essentially repeats the process of direct and back projection used, for example, in computed tomography.Comment: 9 pages, 9 figures, submitted to "Computer Optics"; extra experiment added, new theorem proof added, references added; typos correcte

    Advanced Hough-based method for on-device document localization

    Get PDF
    The demand for on-device document recognition systems increases in conjunction with the emergence of more strict privacy and security requirements. In such systems, there is no data transfer from the end device to a third-party information processing servers. The response time is vital to the user experience of on-device document recognition. Combined with the unavailability of discrete GPUs, powerful CPUs, or a large RAM capacity on consumer-grade end devices such as smartphones, the time limitations put significant constraints on the computational complexity of the applied algorithms for on-device execution. In this work, we consider document location in an image without prior knowledge of the document content or its internal structure. In accordance with the published works, at least 5 systems offer solutions for on-device document location. All these systems use a location method which can be considered Hough-based. The precision of such systems seems to be lower than that of the state-of-the-art solutions which were not designed to account for the limited computational resources. We propose an advanced Hough-based method. In contrast with other approaches, it accounts for the geometric invariants of the central projection model and combines both edge and color features for document boundary detection. The proposed method allowed for the second best result for SmartDoc dataset in terms of precision, surpassed by U-net like neural network. When evaluated on a more challenging MIDV-500 dataset, the proposed algorithm guaranteed the best precision compared to published methods. Our method retained the applicability to on-device computations.Comment: This is a preprint of the article submitted for publication in the journal "Computer Optics

    MIDV-2019: Challenges of the modern mobile-based document OCR

    Full text link
    Recognition of identity documents using mobile devices has become a topic of a wide range of computer vision research. The portfolio of methods and algorithms for solving such tasks as face detection, document detection and rectification, text field recognition, and other, is growing, and the scarcity of datasets has become an important issue. One of the openly accessible datasets for evaluating such methods is MIDV-500, containing video clips of 50 identity document types in various conditions. However, the variability of capturing conditions in MIDV-500 did not address some of the key issues, mainly significant projective distortions and different lighting conditions. In this paper we present a MIDV-2019 dataset, containing video clips shot with modern high-resolution mobile cameras, with strong projective distortions and with low lighting conditions. The description of the added data is presented, and experimental baselines for text field recognition in different conditions. The dataset is available for download at ftp://smartengines.com/midv-500/extra/midv-2019/.Comment: 6 pages, 3 figures, 3 tables, 18 references, submitted and accepted to the 12th International Conference on Machine Vision (ICMV 2019

    Unfolder: Fast localization and image rectification of a document with a crease from folding in half

    Full text link
    Presentation of folded documents is not an uncommon case in modern society. Digitizing such documents by capturing them with a smartphone camera can be tricky since a crease can divide the document contents into separate planes. To unfold the document, one could hold the edges potentially obscuring it in a captured image. While there are many geometrical rectification methods, they were usually developed for arbitrary bends and folds. We consider such algorithms and propose a novel approach Unfolder developed specifically for images of documents with a crease from folding in half. Unfolder is robust to projective distortions of the document image and does not fragment the image in the vicinity of a crease after rectification. A new Folded Document Images dataset was created to investigate the rectification accuracy of folded (2, 3, 4, and 8 folds) documents. The dataset includes 1600 images captured when document placed on a table and when held in hand. The Unfolder algorithm allowed for a recognition error rate of 0.33, which is better than the advanced neural network methods DocTr (0.44) and DewarpNet (0.57). The average runtime for Unfolder was only 0.25 s/image on an iPhone XR.Comment: This is a preprint of the article accepted for publication in the journal "Computer Optics
    corecore