10 research outputs found
Star tracks in the ghost condensate
We consider the infrared modification of gravity by ghost condensate.
Naively, in this scenario one expects sizeable modification of gravity at
distances of order 1000 km, provided that the characteristic time scale of the
theory is of the order of the Hubble time. However, we argue that this is not
the case. The main physical reason for the conspiracy is a simple fact that the
Earth (and any other object in the Universe) has velocity of at least of order
10^{-3}c with respect to the rest frame of ghost condensate. Combined with
strong retardation effects present in the ghost sector, this fact implies that
no observable modification of the gravitational field of nearby objects occurs.
Instead, the physical manifestation of ghost condensate is the presence of
``star tracks'' -- narrow regions of space with growing gravitational and ghost
fields inside -- along the trajectory of any massive object. We briefly discuss
the possibilities to observe these tracks.Comment: 20 pages, 2 figures, final version published in JCA
Accelerating Universe and Cosmological Perturbation in the Ghost Condensate
In the simplest Higgs phase of gravity called ghost condensation, an
accelerating universe with a phantom era (w<-1) can be realized without ghost
or any other instabilities. In this paper we show how to reconstruct the
potential in the Higgs sector Lagrangian from a given cosmological history
(H(t), \rho(t)). This in principle allows us to constrain the potential by
geometrical information of the universe such as supernova distance-redshift
relation. We also derive the evolution equation for cosmological perturbations
in the Higgs phase of gravity by employing a systematic low energy expansion.
This formalism is expected to be useful to test the theory by dynamical
information of large scale structure in the universe such as cosmic microwave
background anisotropy, weak gravitational lensing and galaxy clustering.Comment: 30 pages; typos corrected; version accepted for publication in JCA
A Single Scalar Field Model of Dark Energy with Equation of State Crossing -1
In this paper we study the possibility of building models of dark energy with
equation of state across -1 and propose explicitly a model with a single scalar
field which gives rise to an equation of state larger than -1 in the past and
less than -1 at the present time, consistent with the current observations.Comment: 4 pages, 1 figure, the version accepted by JCAP, presentation
improved and references adde
Holographic Dark Energy Like in Gravity
We investigate the corresponding relation between gravity and
holographic dark energy. We introduce a kind of energy density from
which has role of the same as holographic dark energy.
We obtain the differential equation that specify the evolution of the
introduced energy density parameter based on varying gravitational constant. We
find out a relation for the equation of state parameter to low redshifts which
containing varying correction.Comment: 10 page
Cosmic acceleration from asymmetric branes
We consider a single 3-brane sitting in between two different five
dimensional spacetimes. On each side of the brane, the bulk is a solution to
Gauss-Bonnet gravity, although the bare cosmological constant, funda mental
Planck scale, and Gauss-Bonnet coupling can differ. This asymmetry leads to
weighted junction conditions across the brane and interesting brane cosmology.
We focus on two special cases: a generalized Randall-Sundrum model without any
Gauss-Bonnet terms, and a stringy model, without any bare cosmological
constants, and positive Gauss-Bonnet coupling. Even though we assume there is
no vacuum energy on the brane, we find late time de Sitter cosmologies can
occur. Remarkably, in certain parameter regions, this acceleration is preceded
by a period of matter/radiation domination, with , all the
way back to nucleosynthesis.Comment: Version appearing in CQ
Mimicking Lambda with a spin-two ghost condensate
We propose a simple higher-derivative braneworld gravity model which contains
a stable accelerating branch, in the absence of cosmological constant or
potential, that can be used to describe the late time cosmic acceleration. This
model has similar qualitative features to that of Dvali-Gabadadze-Porrati, such
as the recovery of four-dimensional gravity at subhorizon scales, but unlike
that case, the graviton zero mode is massless and there are no linearized
instabilities. The acceleration rather is driven by bulk gravity in the form of
a spin-two ghost condensate. We show that this model can be consistent with
cosmological bounds and tests of gravity.Comment: references adde
Dilatonic ghost condensate as dark energy
We explore a dark energy model with a ghost scalar field in the context of
the runaway dilaton scenario in low-energy effective string theory. We address
the problem of vacuum stability by implementing higher-order derivative terms
and show that a cosmologically viable model of ``phantomized'' dark energy can
be constructed without violating the stability of quantum fluctuations. We also
analytically derive the condition under which cosmological scaling solutions
exist starting from a general Lagrangian including the phantom type scalar
field. We apply this method to the case where the dilaton is coupled to
non-relativistic dark matter and find that the system tends to become quantum
mechanically unstable when a constant coupling is always present. Nevertheless,
it is possible to obtain a viable cosmological solution in which the energy
density of the dilaton eventually approaches the present value of dark energy
provided that the coupling rapidly grows during the transition to the scalar
field dominated era.Comment: 26 pages, 6 figure