397 research outputs found
High-speed noise-free optical quantum memory
Quantum networks promise to revolutionise computing, simulation, and
communication. Light is the ideal information carrier for quantum networks, as
its properties are not degraded by noise in ambient conditions, and it can
support large bandwidths enabling fast operations and a large information
capacity. Quantum memories, devices that store, manipulate, and release on
demand quantum light, have been identified as critical components of photonic
quantum networks, because they facilitate scalability. However, any noise
introduced by the memory can render the device classical by destroying the
quantum character of the light. Here we introduce an intrinsically noise-free
memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We
consequently demonstrate for the first time successful storage of GHz-bandwidth
heralded single photons in a warm atomic vapour with no added noise; confirmed
by the unaltered photon statistics upon recall. Our ORCA memory platform meets
the stringent noise-requirements for quantum memories whilst offering technical
simplicity and high-speed operation, and therefore is immediately applicable to
low-latency quantum networks
Quantum squeezing of optical dissipative structures
We show that any optical dissipative structure supported by degenerate
optical parametric oscillators contains a special transverse mode that is free
from quantum fluctuations when measured in a balanced homodyne detection
experiment. The phenomenon is not critical as it is independent of the system
parameters and, in particular, of the existence of bifurcations. This result is
a consequence of the spatial symmetry breaking introduced by the dissipative
structure. Effects that could degrade the squeezing level are considered.Comment: 4 pages and a half, 1 fugure. Version to appear in Europhysics
Letter
Type-III intermittency in a four-level coherently pumped laser
We study a homogeneously broadened four-level model for a coherently pumped laser with pump and laser fields having crossed linear polarizations. For a parameter range of the type explored in the experiments by Tang et al. [Phys. Rev. A 44, R35 (1991)] the system exhibits a family of type-III-intermittency transitions to chaos in which the onset of intermittency is preceded by period-2, period-3, or period-4 states. We find similarities but also differences between the results of our theory and their experimental results
Fuzzy Control Design for a Class of Nonlinear Network Control System: Helicopter Case Study
This paper presents a fuzzy control approach to a helicopter MIMO nonlinear system, implemented on a Networked Control System, as case study. For this, a hardware-in-the-Loop implementation is developed using several multi-channel A/D Cards, integrated to a computer network system. Variant time delays are considered over Ethernet and CANBUS networks. Fuzzy logic is used to deal with the complexity of the integrated computer network as well as with the dynamics of the system. Two fuzzy logic control systems are coupled for both signals of the helicopter case study: yaw and pitch. Both these tend to concentrate around desired references, considering variant time delays
Circadian Clocks in Mouse and Human CD4+ T Cells
Though it has been shown that immunological functions of CD4+ T cells are time of day-dependent, the underlying molecular mechanisms remain largely obscure. To address the question whether T cells themselves harbor a functional clock driving circadian rhythms of immune function, we analyzed clock gene expression by qPCR in unstimulated CD4+ T cells and immune responses of PMA/ionomycin stimulated CD4+ T cells by FACS analysis purified from blood of healthy subjects at different time points throughout the day. Molecular clock as well as immune function was further analyzed in unstimulated T cells which were cultured in serum-free medium with circadian clock reporter systems. We found robust rhythms of clock gene expression as well as, after stimulation, IL-2, IL-4, IFN-γ production and CD40L expression in freshly isolated CD4+ T cells. Further analysis of IFN-γ and CD40L in cultivated T cells revealed that these parameters remain rhythmic in vitro. Moreover, circadian luciferase reporter activity in CD4+ T cells and in thymic sections from PER2::LUCIFERASE reporter mice suggest that endogenous T cell clock rhythms are self-sustained under constant culture conditions. Microarray analysis of stimulated CD4+ T cell cultures revealed regulation of the NF-κB pathway as a candidate mechanism mediating circadian immune responses. Collectively, these data demonstrate for the first time that CD4+ T cell responses are regulated by an intrinsic cellular circadian oscillator capable of driving rhythmic CD4+ T cell immune responses
Transcriptomics reveal an integrative role for maternal thyroid hormones during zebrafish embryogenesis
Thyroid hormones (THs) are essential for embryonic brain development but the genetic mechanisms involved in the action of maternal THs (MTHs) are still largely unknown. As the basis for understanding the underlying genetic mechanisms of MTHs regulation we used an established zebrafish monocarboxylic acid transporter 8 (MCT8) knock-down model and characterised the transcriptome in 25hpf zebrafish embryos. Subsequent mapping of differentially expressed genes using Reactome pathway analysis together with in situ expression analysis and immunohistochemistry revealed the genetic networks and cells under MTHs regulation during zebrafish embryogenesis. We found 4,343 differentially expressed genes and the Reactome pathway analysis revealed that TH is involved in 1681 of these pathways. MTHs regulated the expression of core developmental pathways, such as NOTCH and WNT in a cell specific context. The cellular distribution of neural MTH-target genes demonstrated their cell specific action on neural stem cells and differentiated neuron classes. Taken together our data show that MTHs have a role in zebrafish neurogenesis and suggest they may be involved in cross talk between key pathways in neural development. Given that the observed MCT8 zebrafish knockdown phenotype resembles the symptoms in human patients with Allan-Herndon-Dudley syndrome our data open a window into understanding the genetics of this human congenital condition.Portuguese Fundacao para Ciencia e Tecnologia (FCT) [PTDC/EXPL/MARBIO/0430/2013]; CCMAR FCT Plurianual financing [UID/Multi/04326/2013]; FCT [SFRH/BD/111226/2015, SFRH/BD/108842/2015, SFRH/BPD/89889/2012]; FCT-IF Starting Grant [IF/01274/2014]info:eu-repo/semantics/publishedVersio
Metachronous peritoneal metastases in patients with pT4b colon cancer: An international multicenter analysis of intraperitoneal versus retroperitoneal tumor invasion
It was hypothesized that colon cancer with only retroperitoneal invasion is associated with a low risk of peritoneal dissemination. This study aimed to compare the risk of metachronous peritoneal metastases (mPM) between intraperitoneal and retroperitoneal invasion
Dynamics of coherently pumped lasers with linearly polarized pump and generated fields
The influence of light polarization on the dynamics of an optically pumped single-mode laser with a homogeneously broadened four-level medium is theoretically investigated in detail. Pump and laser fields with either parallel or crossed linear polarizations are considered, as are typical in far-infrared-laser experiments. Numerical simulations reveal dramatically different dynamic behaviors for these two polarization configurations. The analysis of the model equations allows us to find the physical origin of both behaviors. In particular, the crossed-polarization configuration is shown to be effective in decoupling the pump and laser fields, thus allowing for the appearance of Lorenz-type dynamics
Trial-by-Trial Changes in a Priori Informational Value of External Cues and Subjective Expectancies in Human Auditory Attention
Background: Preparatory activity based on a priori probabilities generated in previous trials and subjective expectancies would produce an attentional bias. However, preparation can be correct (valid) or incorrect (invalid) depending on the actual target stimulus. The alternation effect refers to the subjective expectancy that a target will not be repeated in the same position, causing RTs to increase if the target location is repeated. The present experiment, using the Posner’s central cue paradigm, tries to demonstrate that not only the credibility of the cue, but also the expectancy about the next position of the target are changedin a trial by trial basis. Sequences of trials were analyzed. Results: The results indicated an increase in RT benefits when sequences of two and three valid trials occurred. The analysis of errors indicated an increase in anticipatory behavior which grows as the number of valid trials is increased. On the other hand, there was also an RT benefit when a trial was preceded by trials in which the position of the target changed with respect to the current trial (alternation effect). Sequences of two alternations or two repetitions were faster than sequences of trials in which a pattern of repetition or alternation is broken. Conclusions: Taken together, these results suggest that in Posner’s central cue paradigm, and with regard to the anticipatory activity, the credibility of the external cue and of the endogenously anticipated patterns of target location are constantly updated. The results suggest that Bayesian rules are operating in the generation of anticipatory activity as
Relatively higher norms of blood flow velocity of major intracranial arteries in North-West Iran
<p>Abstract</p> <p>Background</p> <p>Transcranial Doppler (TCD) is a noninvasive, less expensive and harmless hemodynamic study of main intracranial arteries. The aim of this study was to assess normal population values of cerebral blood flow velocity and its variation over age and gender in a given population.</p> <p>Findings</p> <p>Eighty healthy volunteers including 40 people with an age range of 25-40 years (group1) and 40 persons with an age range of 41-55 years (group2) were studied. In each group 20 males and 20 females were enrolled. Peak systolic, end diastolic and mean velocities of nine main intracranial arteries were determined using TCD. Mean age of the studied volunteers was 31.6 ± 4.50 years in group one and 47.2 ± 4.3 years in group two. Mean age among males was 40 years and among females it was 39. Mean blood flow velocity in middle, anterior and posterior cerebral arteries, vertebral and basilar arteries was 60 ± 8, 52 ± 9, 42 ± 6, 39 ± 8 and 48 ± 8 cm/sec respectively. Cerebral blood flow velocities among females were relatively higher than males. Cerebral blood flow velocity of left side was relatively higher than right side.</p> <p>Conclusion</p> <p>Compared to previous studies, cerebral blood flow velocity in this population was relatively higher.</p
- …