209 research outputs found
Brain interaction during cooperation: Evaluating local properties of multiple-brain network
Subjects’ interaction is the core of most human activities. This is the reason why a lack of coordination is often the cause of missing goals, more than individual failure. While there are different subjective and objective measures to assess the level of mental effort required by subjects while facing a situation that is getting harder, that is, mental workload, to define an objective measure based on how and if team members are interacting is not so straightforward. In this study, behavioral, subjective and synchronized electroencephalographic data were collected from couples involved in a cooperative task to describe the relationship between task difficulty and team coordination, in the sense of interaction aimed at cooperatively performing the assignment. Multiple-brain connectivity analysis provided information about the whole interacting system. The results showed that averaged local properties of a brain network were affected by task difficulty. In particular, strength changed significantly with task difficulty and clustering coefficients strongly correlated with the workload itself. In particular, a higher workload corresponded to lower clustering values over the central and parietal brain areas. Such results has been interpreted as less efficient organization of the network when the subjects’ activities, due to high workload tendencies, were less coordinated
Neurophysiological Profile of Antismoking Campaigns
Over the past few decades, antismoking public service announcements (PSAs) have been used by governments to promote healthy
behaviours in citizens, for instance, against drinking before the drive and against smoke. Effectiveness of such PSAs has been
suggested especially for young persons. By now, PSAs efficacy is still mainly assessed through traditional methods (questionnaires
and metrics) and could be performed only after the PSAs broadcasting, leading to waste of economic resources and time in the
case of Ineffective PSAs. One possible countermeasure to such ineffective use of PSAs could be promoted by the evaluation of the
cerebral reaction to the PSA of particular segments of population (e.g., old, young, and heavy smokers). In addition, it is crucial to
gather such cerebral activity in front of PSAs that have been assessed to be effective against smoke (Effective PSAs), comparing
results to the cerebral reactions to PSAs that have been certified to be not effective (Ineffective PSAs). &e eventual differences
between the cerebral responses toward the two PSA groups will provide crucial information about the possible outcome of new
PSAs before to its broadcasting. &is study focused on adult population, by investigating the cerebral reaction to the vision of
different PSA images, which have already been shown to be Effective and Ineffective for the promotion of an antismoking
behaviour. Results showed how variables as gender and smoking habits can influence the perception of PSA images, and how
different communication styles of the antismoking campaigns could facilitate the comprehension of PSA’s message and then
enhance the related impac
Antismoking campaigns’ perception and gender differences: a comparison among EEG Indices
Human factors’ aim is to understand and evaluate the interactions between people and tasks, technologies, and environment. Among human factors, it is possible then to include the subjective reaction to external stimuli, due to individual’s characteristics and states of mind. These processes are also involved in the perception of antismoking public service announcements (PSAs), the main tool for governments to contrast the first cause of preventable deaths in the world: tobacco addiction. In the light of that, in the present article, it has been investigated through the comparison of different electroencephalographic (EEG) indices a typical item known to be able of influencing PSA perception, that is gender. In order to investigate the neurophysiological underpinnings of such different perception, we tested two PSAs: one with a female character and one with a male character. Furthermore, the experimental sample was divided into men and women, as well as smokers and nonsmokers. The employed EEG indices were the mental engagement (ME: the ratio between beta activity and the sum of alpha and theta activity); the approach/withdrawal (AW: the frontal alpha asymmetry in the alpha band); and the frontal theta activity and the spectral asymmetry index (SASI: the ratio between beta minus theta and beta plus theta). Results suggested that the ME and the AW presented an opposite trend, with smokers showing higher ME and lower AW than nonsmokers. The ME and the frontal theta also evidenced a statistically significant interaction between the kind of the PSA and the gender of the observers; specifically, women showed higher ME and frontal theta activity for the male character PSA. This study then supports the usefulness of the ME and frontal theta for purposes of PSAs targeting on the basis of gender issues and of the ME and the AW and for purposes of PSAs targeting on the basis of smoking habits
A new perspective for the training assessment: Machine learning-based neurometric for augmented user's evaluation
Inappropriate training assessment might have either high social costs and economic impacts, especially in high risks categories, such as Pilots, Air Traffic Controllers, or Surgeons. One of the current limitations of the standard training assessment procedures is the lack of information about the amount of cognitive resources requested by the user for the correct execution of the proposed task. In fact, even if the task is accomplished achieving the maximum performance, by the standard training assessment methods, it would not be possible to gather and evaluate information about cognitive resources available for dealing with unexpected events or emergency conditions. Therefore, a metric based on the brain activity (neurometric) able to provide the Instructor such a kind of information should be very important. As a first step in this direction, the Electroencephalogram (EEG) and the performance of 10 participants were collected along a training period of 3 weeks, while learning the execution of a new task. Specific indexes have been estimated from the behavioral and EEG signal to objectively assess the users' training progress. Furthermore, we proposed a neurometric based on a machine learning algorithm to quantify the user's training level within each session by considering the level of task execution, and both the behavioral and cognitive stabilities between consecutive sessions. The results demonstrated that the proposed methodology and neurometric could quantify and track the users' progresses, and provide the Instructor information for a more objective evaluation and better tailoring of training programs. © 2017 Borghini, Aricò, Di Flumeri, Sciaraffa, Colosimo, Herrero, Bezerianos, Thakor and Babiloni
EEG-based mental workload neurometric to evaluate the impact of different traffic and road conditions in real driving settings
Car driving is considered a very complex activity, consisting of different concomitant tasks and subtasks, thus it is crucial to understand the impact of different factors, such as road complexity, traffic, dashboard devices, and external events on the driver’s behavior and performance. For this reason, in particular situations the cognitive demand experienced by the driver could be very high, inducing an excessive experienced mental workload and consequently an increasing of error commission probability. In this regard, it has been demonstrated that human error is the main cause of the 57% of road accidents and a contributing factor in most of them. In this study, 20 young subjects have been involved in a real driving experiment, performed under different traffic conditions (rush hour and not) and along different road types (main and secondary streets). Moreover, during the driving tasks different specific events, in particular a pedestrian crossing the road and a car entering the traffic flow just ahead of the experimental subject, have been acted. A Workload Index based on the Electroencephalographic (EEG), i.e., brain activity, of the drivers has been employed to investigate the impact of the different factors on the driver’s workload. Eye-Tracking (ET) technology and subjective measures have also been employed in order to have a comprehensive overview of the driver’s perceived workload and to investigate the different insights obtainable from the employed methodologies. The employment of such EEG-based Workload index confirmed the significant impact of both traffic and road types on the drivers’ behavior (increasing their workload), with the advantage of being under real settings. Also, it allowed to highlight the increased workload related to external events while driving, in particular with a significant effect during those situations when the traffic was low. Finally, the comparison between methodologies revealed the higher sensitivity of neurophysiological measures with respect to ET and subjective ones. In conclusion, such an EEG-based Workload index would allow to assess objectively the mental workload experienced by the driver, standing out as a powerful tool for research aimed to investigate drivers’ behavior and providing additional and complementary insights with respect to traditional methodologies employed within road safety research
EEG-based cognitive control behaviour assessment: an ecological study with professional air traffic controllers
Several models defining different types of cognitive human behaviour are available. For this work, we
have selected the Skill, Rule and Knowledge (SRK) model proposed by Rasmussen in 1983. This model
is currently broadly used in safety critical domains, such as the aviation. Nowadays, there are no tools
able to assess at which level of cognitive control the operator is dealing with the considered task, that
is if he/she is performing the task as an automated routine (skill level), as procedures-based activity
(rule level), or as a problem-solving process (knowledge level). Several studies tried to model the SRK
behaviours from a Human Factor perspective. Despite such studies, there are no evidences in which such
behaviours have been evaluated from a neurophysiological point of view, for example, by considering
brain activity variations across the different SRK levels. Therefore, the proposed study aimed to
investigate the use of neurophysiological signals to assess the cognitive control behaviours accordingly
to the SRK taxonomy. The results of the study, performed on 37 professional Air Traffic Controllers,
demonstrated that specific brain features could characterize and discriminate the different SRK levels,
therefore enabling an objective assessment of the degree of cognitive control behaviours in realistic
setting
From traumatic childhood to cocaine abuse: the critical function of the immune system
Background: Experiencing traumatic childhood is a risk factor for developing substance use disorder (SUD), but the mechanisms that underlie this relationship have not been determined. Adverse childhood experiences affect the immune system and the immune system mediates the effects of psychostimulants. However, whether this system is involved in the etiology of SUD in individuals who have experience early life stress is unknown. Methods:In this study, we performed a series of ex vivo and in vivo experiments in mice and humans to define the function of the immune system in the early-life stress-induced susceptibility to the neurobehavioral effects of cocaine. Results: We provide evidence that exposure to social-stress (S-S) at an early age permanently sensitizes the peripheral (splenocytes) and brain (microglia) immune responses to cocaine in mice. In the brain, microglial activation in the ventral tegmental area (VTA) of S-S mice was associated with functional alterations in dopaminergic neurotransmission, as measured by whole-cell voltage clamp recordings in dopamine (DA) neurons. Notably, preventing immune activation during the S-S exposure reverted the effects of DA in the VTA and the cocaine-induced behavioral phenotype to control levels. In humans, cocaine modulated Toll-like receptor 4-mediated innate immunity, an effect that was enhanced in cocaine addicts who had experienced a difficult childhood. Conclusions Collectively, our findings demonstrate that sensitization to cocaine in early-life-stressed individuals involves brain and peripheral immune responses and that this mechanism is shared between mice and humans
Reaction of the Ambident Electrophile Dimethyl Carbonate with the Ambident Nucleophile Phenylhydrazine
Dialkyl Carbonates as Sacrifical Molecules: from Heterocycles to Macrocycles
Dialkyl carbonate (DACs) are well recognized green reagents and solvents for new synthetic pathways. In particular dimethyl carbonate (DMC), nowadays synthesized by CO2 insertion into epoxides, has shown surprising high selectivity with different nucleophiles acting either as methoxycarbonylation (BAc2 mechanism) or methylaing (BAl2 mechanism) agent.
In this lecture recent advances in DMC chemistry for chlorine-free synthesis of five- and six-membered heterocycles will be presented. Reaction of 1,4-diols with DMC in the presence of a base resulted in the chlorine-free synthesis of five-membered cyclic compounds. This synthetic procedure can be also used for the quantitative intramolecular heterocyclisation of bifunctional compounds, i.e., 4-amino-1-butanol to achieve pyrrolidine.
Six-member cyclic carbamates have also been synthesized by chlorine-free approach employing DMC chemistry. In fact, reacting a primary amine or a hydrazine with a di(methylcarbonate) derivative of 1,3-diols oxazinan-2-ones can be synthesized in a one-pot chlorine-free reaction.
Recently we also investigated the replacement of the chlorine by a carbonate moiety in half-nitrogen and -sulphur mustard compounds. Results collected demonstrated that the novel mustard carbonates are easily synthesized, don’t show any toxicity and react with a wide range of nucleophiles in the absence of any base. These novel compounds can be employed for the synthesis of piperidines and thiopyrans. Furthermore, the polycondensation of a nitrogen mustard carbonate analogue with aromatic diols under dilution conditions resulted in a new synthetic approach to azacrowns previously not accessible
- …
