143 research outputs found

    MetsĂ€palokesĂ€ 2018 muuttuvassa ilmastossa – poikkeuksellinen vuosi vai uusi normaali?

    Get PDF
    KesÀllÀ 2018 paloi paljon metsÀÀ. Ruotsissa useat laaja-alaiset metsÀpalot polttivat yhteensÀ lÀhemmÀs 25 000 hehtaaria ja maa sai palojen sammuttamiseen apua ulkomaita myöten. Myös Suomessa metsÀpalot pitivÀt palokunnat kiireisinÀ, kun kesÀn aikana maassa syttyi yli 2000 metsÀpaloa, joissa metsÀÀ paloi yhteensÀ noin 1200 hehtaaria. Vaikean metsÀpalokesÀn taustalla oli poikkeuksellisen lÀmmin ja kuiva sÀÀ. TÀssÀ työssÀ arvioitiin kesÀn 2018 olosuhteiden harvinaisuutta Kanadassa kehitetyn metsÀpaloriski-indeksin, ns. FWI-indeksin avulla. Tulosten mukaan suuressa osassa Suomea ja Ruotsia yhtÀ suotuisat olosuhteet metsÀpalojen esiintymiselle kuin kesÀllÀ 2018 toistuvat harvemmin kuin kerran 50 vuodessa. Ruotsissa kesÀ oli tÀssÀ suhteessa vielÀ hieman poikkeuksellisempi kuin Suomessa, missÀ metsÀpaloriski oli vÀhintÀÀn yhtÀ suuri viimeksi kesÀllÀ 2006. Myös metsÀpaloja Suomessa esiintyi kesÀllÀ 2006 enemmÀn kuin kesÀllÀ 2018. SÀÀolosuhteiden erot eivÀt kuitenkaan selitÀ sitÀ miksi Ruotsissa paloi metsÀÀ kesÀllÀ 2018 paljon enemmÀn kuin Suomessa. Viimeisten reilun 20 vuoden aikana metsÀpaloja on esiintynyt maiden pinta-alaan suhteutettuna Suomessa ja Ruotsissa suunnilleen yhtÀ paljon, mutta suuria metsÀpaloja Ruotsissa on esiintynyt paljon enemmÀn kuin Suomessa. Yli 100 hehtaarin laajuisia metsÀpaloja Ruotsissa on esiintynyt jopa noin kymmenen kertaa enemmÀn kuin Suomessa. Ruotsissa on ollut myös useampia yli 1000 hehtaarin metsÀpaloja ja laajin yksittÀinen palo kesÀllÀ 2014 poltti noin 14 000 hehtaaria metsÀÀ VÀstmanlandissa, kun samalla ajanjaksolla laajin metsÀpalo Suomessa poltti vain noin 200 hehtaaria Tammelassa kesÀkuussa 1997. Laaja-alaisten palojen tehokkaan torjunnan taustalla Suomessa arvioidaan olevan muun muassa haja-asutusalueiden aktiivisen vapaapalokuntatoiminnan. Ilmaston lÀmmetessÀ metsÀpaloriskin arvioidaan kasvavan Suomessa ja muualla Pohjois-Euroopassa. Toistaiseksi tÀtÀ ei ole meillÀ voitu havaita kasvaneena paloalana. TÀssÀ työssÀ ilmastonmuutoksen vaikutusta metsÀpaloriskiin havainnollistettiin arvioimalla, kuinka usein Suomen tulevassa ilmastossa on sellaisia kesiÀ, jolloin metsÀpaloriski on yhtÀ suuri tai suurempi kuin viime vuosien vaikeimpina metsÀpalokesinÀ 2006 ja 2018. Eri ilmastonmuutosmallien simulaatioiden tulokset poikkeavat varsin paljonkin toisistaan, mutta nÀyttÀisi kuitenkin siltÀ, ettÀ ainakaan ennen kuluvan vuosisadan puolivÀliÀ vuosien 2006 ja 2018 kaltaiset metsÀpalokesÀt eivÀt mitenkÀÀn merkittÀvÀsti yleistyisi. Toisin sanoen vastaavan kaltaisia metsÀpalokesiÀ esiintyisi edelleen enimmÀkseen vain muutaman vuosikymmenen vÀlein. MikÀli ilmaston lÀmpeneminen jatkuu voimakkaana tai jopa kiihtyy edelleen vuosisadan loppupuolella, voivat tÀllaiset vaikeat metsÀpalokesÀt kuitenkin yleistyÀ niin paljon, ettÀ niitÀ esiintyisi ehkÀ vain muutaman vuoden vÀlein.There occurred plenty of forest fires during the summer of 2018. In Sweden, a total of nearly 25,000 hectares of forest was burnt in several large-scale fires and firefighters from multiple countries were involved in fighting the fires. Also in Finland, the summer was busy for fire departments due to numerous forest fires. There occurred more than 2000 forest fires in Finland during the summer and approximately 1200 hectares of forest was burnt in the fires. The background reason for the difficult forest fire season was weather that was exceptionally warm and dry during the summer. In this work, fire weather conditions were evaluated based on the Fire Weather Index (FWI) system developed originally in Canada. We determined return levels for the Seasonal Severity Rating (SSR) describing the overall fire weather conditions during the fire season. It appeared that the return level for SSR in 2018 was more than 50 years widely in Finland and Sweden. In Sweden, the conditions were in many locations even slightly more exceptional than in Finland where the return levels for SSR were generally at least as high as in 2018 previously in 2006. Also, the number of forest fires and burned area were in Finland larger in 2006 than in 2018. However, differences in weather conditions could not explain why the burned area in Sweden was in 2018 so much larger than in Finland. During the last a couple of decades, the number of forest fires per land area has been rather similar in Finland and Sweden, but there has occurred a much higher number of large-scale fires in Sweden than in Finland. After the mid-1990s, there has been approximately even a ten times larger number of fires burning more than 100 hectares in Sweden than in Finland. During this time period, the largest forest fire occurred in Finland burned only 200 hectares of forest in Tammela in June 1997, while in Sweden several fires have burned even more than 1000 hectares of forest and the largest fire in 2014 burned approximately 14,000 hectares of forest in VÀstmanland. It is assumed that one reason for the effectiveness in suppressing fires in Finland before the fires have escalated into conflagrations is the active role of local volunteer fire departments in countryside. In the future, the forest-fire risk is expected to increase in Finland and elsewhere in Northern Europe due to global warming. However, so far, annual burned areas in Finland have not increased noticeably. In this work, the impact of climate change on forest-fire risk was illustrated by evaluating how often summers with similar or higher forest-fire risk as in 2006 and 2018 will occur in Finland in the future. The results obtained from simulations performed with different global climate models differ quite substantially. Nevertheless, forest fire seasons like in 2006 and 2018 will most likely remain rare at least until the mid-21st century. This would mean that the return levels for that kind of difficult forest fire seasons would still be order of several decades. However, in the late 21st century, difficult forest fire seasons comparable to 2006 and 2018 might occur even as often as every few years if the most pessimistic warming scenarios become realized

    Bioinspired Mo, W and V complexes bearing a highly hydroxyl- functionalized Schiff base ligand

    Get PDF
    A series of bioinspired dioxidomolybdenum(vi), dioxidotungsten(vi) and oxidovanadium(v) complexes [MoO2(H2LSaltris], [WO2(H2LSaltris] and [VO(HLSaltris)](2) were prepared by the reaction of a hydroxyl-rich Schiff base proligand N-(1,3-dihydroxy-2-(hydroxymethyl)propan 2 yl) 3,5 di-tert butylsalicylaldimine (H4LSaltrisc) with metal precursors in methanol solutions. Molybdenum and tungsten complexes crystallize as mononuclear molecules, whereas the vanadium complex forms dinuclear units. From the complexes, [VO(HLSaltris)](2) shows activity in the oxidation of 4-tert-butylcatechol and 3,5-di-tert-butylcatechol, mimicking the action of the dicopper enzyme catechol oxidase

    The Syntheses and Vibrational Spectra of O-16- and O-18-Enriched cis-MO2 (M=Mo, W) Complexes

    Get PDF
    In this contribution, we report convenient synthetic approaches for obtaining O-16/O-18-enriched dioxidometal(VI) complexes, MO2(L) (W, Mo), with a linear, tetradentate amine phenolate ligand N,N-dimethyl-N,N-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine (H2L) and describe their characterization by IR and Raman spectroscopy complemented by DFT computational analysis. The isotopologues of WO2(L) were made of tungsten(VI) trisglycolate W(eg)(3) (eg=1,2-ethanediolate dianion) and ligand H2L in the presence of either H-2[O-16] or H-2[O-18], whereas (MoO2)-O-16(L) was made using Na(2)MoO(4)2H(2)O which was converted to (MoO2)-O-18(L) by oxido substitution using H-2[O-18]. The complementary IR and Raman analyses show the (MO2)(s) and (MO2)(a) at 934 and 899cm(-1) for (WO2)-O-16(L) and at 914 and 898cm(-1) for (MoO2)-O-16(L), respectively. In the vibrational spectra of the O-18 substituted derivatives, the (MO2)(s) were shifted to lower energy by 43cm(-1) for (WO2)-O-18(L) and by 41cm(-1) for (MoO2)-O-18(L) whereas asymmetric MO2 stretches in the IR were partially overlapped by an organic ligand related stretch. However, Raman spectroscopy, accompanied by DFT calculations, allowed the deciphering the (MO2)(a) shifts of 47cm(-1) for (WO2)-O-18(L) and 31cm(-1) for (MoO2)-O-18(L)

    Ilmastonmuutoksen vaikutukset Suomessa metsÀnhoidon nÀkökulmasta

    Get PDF
    Kasvavat metsĂ€t sitovat hiiltĂ€ ilmakehĂ€stĂ€, ja metsillĂ€ on siten tĂ€rkeĂ€ rooli ilmastonmuutoksen hillinnĂ€ssĂ€. MetsĂ€t ovat myös tĂ€rkeitĂ€ virkistysalueita, ja ennen kaikkea luonnontilaisia metsiĂ€ tarvitaan pyrittĂ€essĂ€ suojelemaan luonnon monimuotoisuutta. Toisaalta metsĂ€teollisuus on yksi Suomen tĂ€rkeimmistĂ€ teollisuudenaloista, joten myös metsien taloudellinen merkitys Suomessa on suuri. Ilmastonmuutoksen edetessĂ€ ja erilaisten metsien kĂ€yttöön liittyvien intressien ristipaineessa korostuu kysymys siitĂ€, miten metsiĂ€ voidaan hyödyntÀÀ kestĂ€vĂ€llĂ€ tavalla. MetsĂ€nhoidon suositusten uudistamisen pohjaksi tarvitaan tietoja niin ilmastonmuutoksen suuruudesta kuin sen vaikutuksistakin. TĂ€ssĂ€ raportissa esitetÀÀn tĂ€mĂ€nhetkisen tietĂ€myksen mukaiset arviot ilmastonmuutoksesta Suomessa sekĂ€ siitĂ€, millaisia vaikutuksia muutoksella on Suomen metsiin ja metsĂ€taloudelle. Viimeisten noin 150 vuoden aikana keskilĂ€mpötila on Suomessa jo kohonnut pari astetta. TĂ€llĂ€ hetkellĂ€ lĂ€mpötila nousee Suomessa vajaat puoli astetta vuosikymmenessĂ€. Kuluvan vuosisadan puolivĂ€liin mennessĂ€ lĂ€mpötilan odotetaan kohoavan nykyisestĂ€ noin 1–1,5 astetta lisÀÀ. Kuinka paljon lĂ€mpötila nousee edelleen vuosisadan jĂ€lkipuoliskolla, riippuu suuresti kasvihuonekaasupÀÀstöjen tulevasta maailmanlaajuisesta kehityksestĂ€. Suomessa lĂ€mpötilan nousu on noin kaksi kertaa nopeampaa kuin maapallolla keskimÀÀrin. LĂ€mpenemisen lisĂ€ksi sateiden odotetaan lisÀÀntyvĂ€n etenkin talvikuukausina. Toisaalta kesĂ€llĂ€ kuivuus voi vaivata aiempaa useammin. LĂ€mpeneminen ja ilmakehĂ€n kohonnut hiilidioksidipitoisuus ovat jo omalta osaltaan kiihdyttĂ€neet metsien kasvua, ja tulevaisuudessa metsiemme ennustetaan kasvavan yhĂ€ rivakammin. Toisaalta lisÀÀntyvĂ€t metsĂ€tuhot voivat osittain neutralisoida tĂ€mĂ€n kehityksen. Erityisesti kuusikot ovat alttiita paitsi monille tuhonaiheuttajille, niin EtelĂ€-Suomessa myös lisÀÀntyvĂ€lle kuivuudelle. TuhohyönteisistĂ€ lĂ€mpeneminen hyödyttÀÀ muun muassa kaarnakuoriaisiin lukeutuvaa kirjanpainajaa. Talvella roudan vĂ€heneminen vaikeuttaa puiden korjuuolosuhteita, mikĂ€ lisÀÀ juuristovaurioiden riskiĂ€ korjuun yhteydessĂ€ ja haittaa puunkorjuun logistiikkaa. Myös tuulituhojen riski kasvaa roudan vĂ€hentyessĂ€. KansainvĂ€lisesti tavoitteeksi on asetettu lĂ€mpenemisen rajaaminen maailmanlaajuisesti alle kahteen asteeseen esiteolliseen aikaan eli 1700-luvun puolivĂ€lin ilmastoon verrattuna. TĂ€mĂ€ edellyttĂ€isi nopeaa maailmanlaajuista kasvihuonekaasupÀÀstöjen hillintÀÀ. Toistaiseksi kasvihuonekaasujen pÀÀstöjen kasvua ei ole pystytty rajoittamaan siinĂ€ mÀÀrin, ettĂ€ tavoitteen toteutuminen nĂ€yttĂ€isi todennĂ€köiseltĂ€, joten on syytĂ€ varautua voimakkaampaan lĂ€mpenemiseen. Pahimman skenaarion toteutuessa lĂ€mpötila voi maailmanlaajuisesti kohota jopa yli neljĂ€ astetta kuluvan vuosisadan aikana. YksittĂ€isen metsĂ€nomistajan kannalta keskeistĂ€ on huolehtia metsien kasvusta ja elinvoimasta sekĂ€ pyrkiĂ€ myös tunnistamaan metsiĂ€ uhkaavat riskit, puuston ja maaston vaihtelevuus huomioon ottaen. Riskien hallinnan tueksi verkossa on saatavilla runsaasti avoimia ilmaston vaihteluita ja sÀÀn ÀÀri-ilmiöiden esiintymistĂ€ kuvaavia tietoaineistoja sekĂ€ ennustepalveluita.Growing forests sequester carbon from the atmosphere, and hence forests have Aan important role in mitigating climate change. Forests are also important as recreational areas, and natural forests are needed in maintaining biodiversity. On the other hand, the economic importance of forests is substantial in Finland as the forest industry is a major contributor to wellbeing in the country. Ongoing climate change and the multiple contradictory interests towards forests expressed from different sectors in society make it important to study how forests can be exploited in a sustainable way. Information on the magnitude and impacts of climate change are needed in revising the forest management recommendations. In this report, we present an assessment of climate change in Finland based on current knowledge and describe the expected effects of the change on forests and forestry. Over the last 150 years, the mean temperature in Finland has already risen by about 2 °C. Presently, the temperature continues to increase with a rate of almost 0.5 °C per decade, and by the mid-century, temperatures in Finland are expected to be approximately 1–1.5 °C higher than at present. The rate of warming during the latter half of the 21st century will largely depend on the future evolution of global greenhouse gas emissions. In Finland, the rate of warming is about twice as large as the global average. In addition to warming, precipitation levels, particularly in winter, are expected to increase in the future. On the other hand, drought may occur in summer more frequently than at present. Increasing temperature and rising atmospheric carbon dioxide concentration have already contributed to accelerating forest growth. In the future, our forests are projected to grow even more rapidly. On the other hand, an increasing frequency of forest damages may partly overrule this development. Particularly, spruce forests are vulnerable to many insect pests but in southern Finland also to drought. An example of a pest benefitting from the warming is the European spruce bark beetle. In winter, reduction of soil frost complicates the logistics of forest harvesting and increases the risk of root damage during the harvest. The risk of wind damage also increases as the soil frost decreases. Internationally, the goal is to limit global warming to less than 2 °C compared to pre-industrial era, i.e., the mid-18th century. This would require rapid global mitigation of greenhouse gas emissions. So far, limiting the increase in global greenhouse gas emissions has not been adequately successful so that reaching the target would seem likely. Thus, there is a need to be prepared for a more severe warming. In the worst case, the temperature could rise even by more than 4 °C globally by the end of the 21st century. From the forest owner viewpoint, it is important to take care of the growth and vitality of the forest stands and to identify the risks threatening the stands, taking into account the variability of the stands and the terrain. To support risk management, there are available several open data sets on climate variability and the occurrence of extreme weather events, as well as forecasting services.VĂ€xande skogar binder kol frĂ„n atmosfĂ€ren och spelar dĂ€rmed en viktig roll för att mildra klimatförĂ€ndringarna. Skogar Ă€r ocksĂ„ viktiga som rekreationsomrĂ„den, och framför allt behövs naturskogar för att skydda den biologiska mĂ„ngfalden. Å andra sidan Ă€r skogsindustrin en av Finlands viktigaste industribranscher och skogsbrukets ekonomiska betydelse Ă€r dĂ€rmed ocksĂ„ betydande. PĂ„gĂ„ende klimatförĂ€ndringar, samt delvis till och med motstridiga intressen gentemot skogen som uttrycks frĂ„n olika sektorer i samhĂ€llet, gör det viktigt att studera hur skogen kan utnyttjas pĂ„ ett hĂ„llbart sĂ€tt. Information om bĂ„de omfattningen och konsekvenserna av klimatförĂ€ndringarna behövs för att revidera skogsvĂ„rdsrekommendationerna. I denna rapport presenterar vi en bedömning av klimatförĂ€ndringarna i Finland baserat pĂ„ nuvarande information och beskriver de förvĂ€ntade effekterna pĂ„ skog och skogsbruk. Under de senaste 150 Ă„ren har medeltemperaturen i Finland redan stigit med cirka 2 °C. För nĂ€rvarande stiger temperaturen i Finland med nĂ€stan 0,5 °C per Ă„rtionde. I mitten av 2000-talet förvĂ€ntas temperaturerna vara cirka 1–1,5 °C högre Ă€n för nĂ€rvarande. UppvĂ€rmningshastigheten under den senare hĂ€lften av 2000-talet beror till stor del pĂ„ den framtida utvecklingen av de globala utslĂ€ppen av vĂ€xthusgaser. I Finland Ă€r uppvĂ€rmningen ungefĂ€r dubbelt sĂ„ snabb som det globala genomsnittet. Förutom uppvĂ€rmningen förvĂ€ntas nederbörden att öka i framtiden, sĂ€rskilt pĂ„ vintern. Å andra sidan kan torka förekomma pĂ„ sommaren oftare Ă€n för nuförtiden. Högre temperaturer och stigande koldioxidkoncentration i atmosfĂ€ren har redan bidragit till att förbĂ€ttra skogstillvĂ€xten. I framtiden berĂ€knas vĂ„ra skogar vĂ€xa Ă€nnu snabbare. Å andra sidan kan en ökande frekvens av skogsskador delvis radera denna utveckling. Det Ă€r sĂ€rskilt granskogar som Ă€r sĂ„rbara för mĂ„nga skadedjur, men ocksĂ„ för torka i södra Finland. Ett exempel pĂ„ ett skadedjur som kan dra nytta av uppvĂ€rmningen Ă€r granbarkborren. PĂ„ vintern komplicerar en minskning av tjĂ€le logistiken för skogsavverkning och ökar risken för rotskador under avverkningen. Risken för vindskador ökar ocksĂ„ nĂ€r tjĂ€len minskar. Internationellt har mĂ„let satts att begrĂ€nsa den globala uppvĂ€rmningen till mindre Ă€n 2 °C jĂ€m-fört med den förindustriella tiden, dvs mitten av 1700-talet. För att uppnĂ„ mĂ„let skulle det krĂ€vas en snabb minskning av de globala utslĂ€ppen av vĂ€xthusgaser. Hittills har man inte lyckats begrĂ€nsa ökningen av de globala utslĂ€ppen av vĂ€xthusgaser i en sĂ„dan utstrĂ€ckning att det skulle verka troligt att mĂ„let kan uppnĂ„s. DĂ€rför finns det ett behov av att förbereda sig för en större uppvĂ€rmning. I vĂ€rsta fall kan den globala medeltemperaturen öka med mer Ă€n 4 °C till slutet av 2000-talet. Det Ă€r viktigt för den enskilda skogsĂ€garen att ta hand om skogens tillvĂ€xt och livskraft, samt att försöka identifiera riskerna som hotar skogarna, med hĂ€nsyn till variationer i bestĂ„nd och terrĂ€ng. För att stödja riskhanteringen finns det flera öppna datauppsĂ€ttningar om klimatvariabilitet och förekomsten av extrema vĂ€derhĂ€ndelser, sĂ„vĂ€l som prognostjĂ€nster

    State of the Practice in Application Programming Interfaces (APIs): A Case Study

    Get PDF
    Application Programming Interfaces (APIs) have become prevalent in today’s software systems and services. APIs are basically a technical means to realize the co-operation between software systems or services. While there are several guidelines for API development, the actually applied practices and challenges are less clear. To better understand the state of the practice of API development and management in the industry, we conducted a descriptive case study in four Finnish software companies: two consultancy companies developing software for their customers, and two companies developing their software products. As a result, we identified five different usage scenarios for APIs and emphasize that diversity of usage should be taken into account more explicitly especially in research. API development and technical management are well supported by the existing tools and technologies especially available from the cloud technology. This leaves as the main challenge the selection of the right technology from the existing technology stack. Documentation and usability are practical issues to be considered and often less rigorously addressed. However, understanding what kind of API management model to apply for the business context appears as the major challenge. We also suggest considering APIs more clearly a separate concern in the product management with specific practices, such as API roadmapping.Peer reviewe

    Action-oriented knowledge for sustainable management of organic soils in Finnish agriculture

    Get PDF
    Agriculture is a contributing force to climate change due to unsustainable changes in land use with the usage of peatlands for food production in Finland. The use of organic soils in food production is a complex and politically driven issue, thus multistakeholder and participatory approaches to policy development, implementation and evaluation are essential. This study is integrating qualitative and quantitative methods in an iterative process to produce action-oriented knowledge for supporting actions to sustainably manage peatlands and reduce the enormous greenhouse gas emissions from agricultural peatlands. This study has engaged inter-disciplinary researchers and transdisciplinary actors in the Finnish food system via farmers, regional and ministry officials, food industry representatives along with education and research representatives to produce action-oriented knowledge for sustainability. The results indicate that actions are needed to develop a shared understanding between relevant actors and stakeholders in the food system to create activities and effective policy measures to remove peatlands from active production in Finland. Therefore, there is a necessity to identify and define incentives from both the public and private sectors to remove peatlands from food production, and thus reducing greenhouse gas emissions from agriculture. Interventions that account for local, regional, and national perspectives should be co-created among the inter-disciplinary researchers and transdisciplinary actors in the food system to generate transformative and system-wide change in the transition towards a low-carbon society

    Integration of catalyst and nucleophile in oxometal aminobis(phenolate) complexes with ammonium iodide pendant arm groups

    Get PDF
    An amine bisphenol ligand with an ammonium iodide group in the pendant arm (H2L) reacts with V, Mo and U oxometal precursors to form oxovanadium(V), dioxomolybdenum(VI) and dioxouranium(VI) species, respectively. In methanol solutions, vanadium(V) and molybdenum(VI) form 1:1 complexes [VO(OMe)(L)]I·2MeOH and [MoO2(L)(H2O)]I·2MeOH, where the cationic charge in the pendant arm is counterbalanced by an iodide anion. Uranium(VI) forms a complex in which the anionic charge of uranate complex unit is compensated by the cationic pendant arm. The complex crystallises as a co-crystal containing a neutral ligand precursor, namely [UO2(L)(OAc)]·[H2L]I·4MeOH. The oxovanadium(V) complex combines a Lewis acid, i.e. a pentacoordinated metal centre with a Lewis basic iodide moiety, which makes it a suitable catalyst for the coupling of CO2 with styrene oxide. The role of the ammonium moiety of the ligand is to carry the iodide nucleophile in the reaction.</p
    • 

    corecore