3,628 research outputs found

    The oscillatory features of visual processing are altered in healthy aging

    Get PDF
    The temporal features of visual processing were compared between young and elderly healthy participants in visual object and word recognition tasks using the technique of random temporal sampling. The target stimuli were additively combined with a white noise field and were exposed very briefly (200 ms). Target visibility oscillated randomly throughout exposure duration by manipulating the signal-to-noise ratio (SNR). Classification images (CIs) based on response accuracy were calculated to reflect processing efficiency according to the time elapsed since target onset and the power of SNR oscillations in the 5–55 Hz range. CIs differed substantially across groups whereas individuals of the same group largely shared crucial features such that a machine learning algorithm reached 100% accuracy in classifying the data patterns of individual participants into their proper group. These findings demonstrate altered perceptual oscillations in healthy aging and are consistent with previous investigations showing brain oscillation anomalies in the elderly

    Variational Autoencoders for Anomalous Jet Tagging

    Full text link
    We present a detailed study on Variational Autoencoders (VAEs) for anomalous jet tagging at the Large Hadron Collider. By taking in low-level jet constituents' information, and training with background QCD jets in an unsupervised manner, the VAE is able to encode important information for reconstructing jets, while learning an expressive posterior distribution in the latent space. When using the VAE as an anomaly detector, we present different approaches to detect anomalies: directly comparing in the input space or, instead, working in the latent space. In order to facilitate general search approaches such as bump-hunt, mass-decorrelated VAEs based on distance correlation regularization are also studied. We find that the naive mass-decorrelated VAEs fail at maintaining proper detection performance, by assigning higher probabilities to some anomalous samples. To build a performant mass-decorrelated anomalous jet tagger, we propose the Outlier Exposed VAE (OE-VAE), for which some outlier samples are introduced in the training process to guide the learned information. OE-VAEs are employed to achieve two goals at the same time: increasing sensitivity of outlier detection and decorrelating jet mass from the anomaly score. We succeed in reaching excellent results from both aspects. Code implementation of this work can be found at \href{https://github.com/taolicheng/VAE-Jet}{Github}.Comment: 35 pages, 22 figures. Revised versio

    A surface-based code contributes to visual shape perception

    Get PDF
    Considerable uncertainty remains regarding the types of features human vision uses for shape representation. Visual-search experiments are reported which assessed the hypothesis of a surface-based (i.e., edge-bounded polygons) code for shape representation in human vision. The results indicate slower search rates and/or longer response times when the target shape shares its constituent surfaces with distractors (conjunction condition) than when the target surfaces are unique in the display (nonconjunction condition). This demonstration is made using test conditions that strictly control any potential artifact pertaining to target- distractor similarity. The surface-based code suggested by this surface-conjunction effect is strictly 2-D, since the effect occurs even when the surfaces are shared between the target and distractors in the 2-D image but not in their 3-D instantiation. Congruently, this latter finding is unaltered by manipulations of the richness of the depth information offered by the stimuli. It is proposed that human vision uses a 2-D surface-based code for shape representation which, considering other key findings in the field, probably coexists with an alternative representation mode based on a type of structural description that can integrate information pertaining to the 3-D aspect of shapes.</p

    The eyes are not the window to basic emotions

    Get PDF
    a b s t r a c t Facial expressions are one of the most important ways to communicate our emotional state. In popular culture and in the scientific literature on face processing, the eye area is often conceived as a very important -if not the most important -cue for the recognition of facial expressions. In support of this, an underutilization of the eye area is often observed in clinical populations with a deficit in the recognition of facial expressions of emotions. Here, we used the Bubbles technique to verify which facial cue is the most important when it comes to discriminating between eight static and dynamic facial expressions (i.e., six basic emotions, pain and a neutral expression). We found that the mouth area is the most important cue for both static and dynamic facial expressions. We conducted an ideal observer analysis on the static expressions and determined that the mouth area is the most informative. However, we found an underutilization of the eye area by human participants in comparison to the ideal observer. We then demonstrated that the mouth area contains the most discriminative motions across expressions. We propose that the greater utilization of the mouth area by the human participants might come from remnants of the strategy the brain has developed with dynamic stimuli, and/or from a strategy whereby the most informative area is prioritized due to the limited capacity of the visuo-cognitive system

    Economics of Malaria Prevention in US Travelers to West Africa

    Get PDF
    Background. Pretravel health consultations help international travelers manage travel-related illness risks through education, vaccination, and medication. This study evaluated costs and benefits of that portion of the health consultation associated with malaria prevention provided to US travelers bound for West Africa. Methods. The estimated change in disease risk and associated costs and benefits resulting from traveler adherence to malaria chemoprophylaxis were calculated from 2 perspectives: the healthcare payer's and the traveler's. We used data from the Global TravEpiNet network of US travel clinics that collect de-identified pretravel data for international travelers. Disease risk and chemoprophylaxis effectiveness were estimated from published medical reports. Direct medical costs were obtained from the Nationwide Inpatient Sample and published literature. Results. We analyzed 1029 records from January 2009 to January 2011. Assuming full adherence to chemoprophylaxis regimens, consultations saved healthcare payers a per-traveler average of 14(9daytrip)to14 (9-day trip) to 372 (30-day trip). For travelers, consultations resulted in a range of net cost of 20(9daytrip)toanetsavingsof20 (9-day trip) to a net savings of 32 (30-day trip). Differences were mostly driven by risk of malaria in the destination country. Conclusions. Our model suggests that healthcare payers save money for short- and longer-term trips, and that travelers save money for longer trips when travelers adhere to malaria recommendations and prophylactic regimens in West Africa. This is a potential incentive to healthcare payers to offer consistent pretravel preventive care to travelers. This financial benefit complements the medical benefit of reducing the risk of malaria

    Does face inversion change spatial frequency tuning?

    Get PDF
    International audienceThe authors examined spatial frequency (SF) tuning of upright and inverted face identification using an SF variant of the Bubbles technique (F. Gosselin & P. G. Schyns, 2001). In Experiment 1, they validated the SF Bubbles technique in a plaid detection task. In Experiments 2a-c, the SFs used for identifying upright and inverted inner facial features were investigated. Although a clear inversion effect was present (mean accuracy was 24% higher and response times 455 ms shorter for upright faces), SF tunings were remarkably similar in both orientation conditions (mean r = .98; an SF band of 1.9 octaves centered at 9.8 cycles per face width for faces of about 6 degrees ). In Experiments 3a and b, the authors demonstrated that their technique is sensitive to both subtle bottom-up and top-down induced changes in SF tuning, suggesting that the null results of Experiments 2a-c are real. The most parsimonious explanation of the findings is provided by the quantitative account of the face inversion effect: The same information is used for identifying upright and inverted inner facial features, but processing has greater sensitivity with the former

    Genome-Wide Mapping of DNA Strand Breaks

    Get PDF
    Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed “damaged DNA immunoprecipitation” (dDIP), uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL) to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage

    Measurement of the Lifetime Difference Between B_s Mass Eigenstates

    Get PDF
    We present measurements of the lifetimes and polarization amplitudes for B_s --> J/psi phi and B_d --> J/psi K*0 decays. Lifetimes of the heavy (H) and light (L) mass eigenstates in the B_s system are separately measured for the first time by determining the relative contributions of amplitudes with definite CP as a function of the decay time. Using 203 +/- 15 B_s decays, we obtain tau_L = (1.05 +{0.16}/-{0.13} +/- 0.02) ps and tau_H = (2.07 +{0.58}/-{0.46} +/- 0.03) ps. Expressed in terms of the difference DeltaGamma_s and average Gamma_s, of the decay rates of the two eigenstates, the results are DeltaGamma_s/Gamma_s = (65 +{25}/-{33} +/- 1)%, and DeltaGamma_s = (0.47 +{0.19}/-{0.24} +/- 0.01) inverse ps.Comment: 8 pages, 3 figures, 2 tables; as published in Physical Review Letters on 16 March 2005; revisions are for length and typesetting only, no changes in results or conclusion
    corecore