5 research outputs found

    Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions

    Get PDF
    Optimal plant growth is hampered by deficiency of the essential macronutrient phosphate in most soils. Plant roots can, however, increase their root hair density to efficiently forage the soil for this immobile nutrient. By generating and exploiting a high-resolution single-cell gene expression atlas of Arabidopsis roots, we show an enrichment of TARGET OF MONOPTEROS 5 / LONESOME HIGHWAY (TMO5/LHW) target gene responses in root hair cells. The TMO5/LHW heterodimer triggers biosynthesis of mobile cytokinin in vascular cells and increases root hair density during low phosphate conditions by modifying both the length and cell fate of epidermal cells. Moreover, root hair responses in phosphate deprived conditions are TMO5 and cytokinin dependent. In conclusion, cytokinin signaling links root hair responses in the epidermis to perception of phosphate depletion in vascular cells

    Analysis of antimicrobial susceptibility and virulence factors in Helicobacter pylori clinical isolates

    Get PDF
    BACKGROUND: In this study, we evaluated the prevalence of primary resistance of Brazilian H. pylori isolates to metronidazole, clarithromycin, amoxicillin, tetracycline, and furazolidone. In addition, the vacA, iceA, cagA and cagE genotypes of strains isolated from Brazilian patients were determined and associated with clinical data in an effort to correlate these four virulence markers and antibiotic resistance. METHODS: H. pylori was cultured in 155 H. pylori-positive patients and MICs for metronidazole, clarithromycin, amoxicillin, tetracycline, and furazolidone were determined by the agar dilution method. Genomic DNA was extracted, and allelic variants of vacA, iceA, cagA and cagE were identified by the polymerase chain reaction. RESULTS: There was a strong association between the vacA s1/cagA -positive genotype and peptic ulcer disease (OR = 5.42, 95% CI 2.6–11.3, p = 0.0006). Additionally, infection by more virulent strains may protect against GERD, since logistic regression showed a negative association between the more virulent strain, vacA s1/cagA-positive genotype and GERD (OR = 0.26, 95% CI 0.08–0.8, p = 0.03). Resistance to metronidazole was detected in 75 patients (55%), to amoxicillin in 54 individuals (38%), to clarithromycin in 23 patients (16%), to tetracycline in 13 patients (9%), and to furazolidone in 19 individuals (13%). No significant correlation between pathogenicity and resistance or susceptibility was detected when MIC values for each antibiotic were compared with different vacA, iceA, cagA and cagE genotypes. CONCLUSION: The analysis of virulence genes revealed a specific association between H. pylori strains and clinical outcome, furthermore, no significant association was detected among pathogenicity and resistance or susceptibility

    Repression of TMO5/LHW-mediated vascular proliferation in Arabidopsis thaliana

    No full text

    Means to quantify vascular cell file numbers in different tissues

    No full text
    Oriented cell divisions are crucial throughout plant development to define the final size and shape of organs and tissues. As most of the tissues in mature roots and stems are derived from vascular tissues, studying cell proliferation in the vascular cell lineage is of great importance. Although perturbations of vascular development are often visible already at the whole plant macroscopic phenotype level, a more detailed characterization of the vascular anatomy, cellular organization and differentiation status of specific vascular cell types can provide insights into which pathway or developmental program is affected. In particular, defects in the frequency or orientation of cell divisions can be reliably identified from the number of vascular cell files. Here, we provide a detailed description of the different clearing, staining and imaging techniques that allow precise phenotypic analysis of vascular tissues in different organs of the model plant Arabidopsis thaliana throughout development, including the quantification of cell file numbers, differentiation status of vascular cell types and expression of reporter genes

    The transcription factor AtMYB12 is part of a feedback loop regulating cell division orientation in the root meristem vasculature

    No full text
    Transcriptional networks are crucial to integrate various internal and external signals into optimal responses during plant growth and development. Primary root vasculature patterning and proliferation are controlled by a network centred around the basic Helix-Loop-Helix transcription factor complex formed by TARGET OF MONOPTEROS 5 (TMO5) and LONESOME HIGHWAY (LHW), which control cell proliferation and division orientation by modulating cytokinin response and other downstream factors. Despite recent progress, many aspects of the TMO5/LHW pathway are not fully understood. In particular, the upstream regulators of TMO5/LHW activity remain unknown. Here, using a forward genetic approach to identify new factors of the TMO5/LHW pathway, we discovered a novel function of the MYB-type transcription factor MYB12. MYB12 physically interacts with TMO5 and dampens the TMO5/LHW-mediated induction of direct target gene expression as well as the periclinal/radial cell divisions. The expression of MYB12 is activated by the cytokinin response, downstream of TMO5/LHW, resulting in a novel MYB12-mediated negative feedback loop that restricts TMO5/LHW activity to ensure optimal cell proliferation rates during root vascular development
    corecore