357 research outputs found

    A method for tailoring the information content of a software process model

    Get PDF
    The framework is defined for a general method for selecting a necessary and sufficient subset of a general software life cycle's information products, to support new software development process. Procedures for characterizing problem domains in general and mapping to a tailored set of life cycle processes and products is presented. An overview of the method is shown using the following steps: (1) During the problem concept definition phase, perform standardized interviews and dialogs between developer and user, and between user and customer; (2) Generate a quality needs profile of the software to be developed, based on information gathered in step 1; (3) Translate the quality needs profile into a profile of quality criteria that must be met by the software to satisfy the quality needs; (4) Map the quality criteria to set of accepted processes and products for achieving each criterion; (5) Select the information products which match or support the accepted processes and product of step 4; and (6) Select the design methodology which produces the information products selected in step 5

    A method for tailoring the information content of a software process model

    Get PDF
    The framework is defined for a general method for selecting a necessary and sufficient subset of a general software life cycle's information products, to support new software development process. Procedures for characterizing problem domains in general and mapping to a tailored set of life cycle processes and products is presented. An overview of the method is shown using the following steps: (1) During the problem concept definition phase, perform standardized interviews and dialogs between developer and user, and between user and customer; (2) Generate a quality needs profile of the software to be developed, based on information gathered in step 1; (3) Translate the quality needs profile into a profile of quality criteria that must be met by the software to satisfy the quality needs; (4) Map the quality criteria to a set of accepted processes and products for achieving each criterion; (5) select the information products which match or support the accepted processes and product of step 4; and (6) Select the design methodology which produces the information products selected in step 5

    A PROPOSED RAPID METHOD FOR MEASURING AREA METHANE EMISSIONS: AN EXPLORATORY APPLICATION IN MANHATTAN, NEW YORK, USA

    Get PDF
    Methane is an important greenhouse gas, but methane emissions are poorly understood, in large part due to limited atmospheric methane data on local scales. Local and regional scale methane emissions data are urgently needed to improve modeling of future climate change, and support energy plans and policies to minimize future climate impacts of socio-economically needed energy utilization. There have been numerous recent reports on local ground-level ambient air methane surveys that have provided more thorough data on methane sources in some urban areas. Such surveys generate substantial amounts of high quality ground-level methane concentration data, usually with reliable time and geo-referenced location data. We examined the potential usefulness of such data sets for generation of estimates of methane emissions for surveyed areas. Our efforts focused on development of a generally applicable, relatively simple mass-balance approach to estimate area methane emissions from mobile, ground level ambient air methane concentration and local weather data. The data examined were collected in Manhattan, New York, USA over 5 days in late 2012. Using the ratio of methane emissions (μg m-2s-1) to natural gas usage (μg m-2s-1), the resulting methane emissions estimates for Manhattan were compared to 5 other cities (emissions reported by other investigators using other methods). The emissions estimates for Manhattan derived from ground-level mobile methane surveys were within the range of the estimates for the other cities. In addition, the emissions rates reported for the cities indicate natural gas should not be considered more climate-beneficial than other fossil fuels

    Impact of heatwave on a megacity: an observational analysis of New York City during July 2016

    Full text link
    More than half of the world\u27s current population resides in urban areas, and cities account for roughly three-quarters of the total greenhouse gas emissions. Current and future trends in urbanization will have significant impacts on global climate. However, our collective understanding of the climate of urban areas remains deficient, which is mainly related to significant knowledge gaps in observations. The New York City Summer Heat Campaign was initiated to address some of these critical knowledge gaps. As part of the campaign the urban boundary layer over New York City was continuously monitored during July 2016, a period that witnessed three heatwave events. Surface weather stations and indoor sensors were also used to characterize the urban heat island intensity. Our results reveal that during the month, the urban heat island intensity was nearly twice compared to the decadal average. During the heatwave episodes, urban heat island intensities as high as 10 °C were observed. The thermal profiles indicate elevated temperatures in much of the boundary layer between 800–2500 m during the heatwave episodes. The profiles indicate a complex thermal structure and high intra-city variability. Thermal internal boundary layer was observed in neighborhoods populated by tall buildings. Overall the high-pressure system during the heatwave episodes acted as a thermal block and much of the heat generated in the urban surface layer remained within the boundary layer, thereby amplifying the near surface air temperature

    Assessment of Urbanization on the Integrated Land-Ocean-Atmosphere Environment in Coastal Metropolis in Preparation for HyspIRI

    Get PDF
    The need for comprehensive studies of the relationships between past and projected changes of regional climate and human activity in comple x urban environments has been well established. The HyspIRI preparato ry airborne activities in California, associated science and applicat ions research, and eventually HyspIRI itself provide an unprecedented opportunity for development and implementation of an integrated data and modeling analysis system focused on coastal urban environments. We will utilize HyspIRI preparatory data collections in developing ne w remote sensing-based tools for investigating the integrated urban e nvironment, emphasizing weather, climate, and energy demands in compl ex coastal cities

    An in vitro-identified high-affinity nucleosome-positioning signal is capable of transiently positioning a nucleosome in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The physiological function of eukaryotic DNA occurs in the context of nucleosomal arrays that can expose or obscure defined segments of the genome. Certain DNA sequences are capable of strongly positioning a nucleosome <it>in vitro</it>, suggesting the possibility that favorable intrinsic signals might reproducibly structure chromatin segments. As high-throughput sequencing analyses of nucleosome coverage <it>in vitro </it>and <it>in vivo </it>have become possible, a vigorous debate has arisen over the degree to which intrinsic DNA:nucleosome affinities orchestrate the <it>in vivo </it>positions of nucleosomes, thereby controlling physical accessibility of specific sequences in DNA.</p> <p>Results</p> <p>We describe here the <it>in vivo </it>consequences of placing a synthetic high-affinity nucleosome-positioning signal, the 601 sequence, into a DNA plasmid vector in mice. Strikingly, the 601 sequence was sufficient to position nucleosomes during an early phase after introduction of the DNA into the mice (when the plasmid vector transgene was active). This positioning capability was transient, with a loss of strong positioning at a later time point when the transgenes had become silent.</p> <p>Conclusions</p> <p>These results demonstrate an ability of DNA sequences selected solely for nucleosome affinity to organize chromatin <it>in vivo</it>, and the ability of other mechanisms to overcome these interactions in a dynamic nuclear environment.</p
    corecore