161 research outputs found

    A hidden Markov model approach for determining expression from genomic tiling micro arrays

    Get PDF
    BACKGROUND: Genomic tiling micro arrays have great potential for identifying previously undiscovered coding as well as non-coding transcription. To-date, however, analyses of these data have been performed in an ad hoc fashion. RESULTS: We present a probabilistic procedure, ExpressHMM, that adaptively models tiling data prior to predicting expression on genomic sequence. A hidden Markov model (HMM) is used to model the distributions of tiling array probe scores in expressed and non-expressed regions. The HMM is trained on sets of probes mapped to regions of annotated expression and non-expression. Subsequently, prediction of transcribed fragments is made on tiled genomic sequence. The prediction is accompanied by an expression probability curve for visual inspection of the supporting evidence. We test ExpressHMM on data from the Cheng et al. (2005) tiling array experiments on ten Human chromosomes [1]. Results can be downloaded and viewed from our web site [2]. CONCLUSION: The value of adaptive modelling of fluorescence scores prior to categorisation into expressed and non-expressed probes is demonstrated. Our results indicate that our adaptive approach is superior to the previous analysis in terms of nucleotide sensitivity and transfrag specificity

    Identification of miRNA targets with stable isotope labeling by amino acids in cell culture

    Get PDF
    miRNAs are small noncoding RNAs that regulate gene expression. We have used stable isotope labeling by amino acids in cell culture (SILAC) to investigate the effect of miRNA-1 on the HeLa cell proteome. Expression of 12 out of 504 investigated proteins was repressed by miRNA-1 transfection. This repressed set of genes significantly overlaps with miRNA-1 regulated genes that have been identified with DNA array technology and are predicted by computational methods. Moreover, we find that the 3′-untranslated region for the repressed set are enriched in miRNA-1 complementary sites. Our findings demonstrate that SILAC can be used for miRNA target identification and that one highly expressed miRNA can regulate the levels of many different proteins

    Distribution of mtDNA haplotypes in North-Atlantic humpback whales:The influence of behavior on population structure

    Get PDF
    Samples from 136 humpback whales Megaptera novaeangliae, representing 5 feeding aggregations in the North Atlantic and 1 in the Antarctic, were analyzed with respect to the sequence variation in the mitochondrial (mt) control region. A total of 288 base pairs was sequenced by direct sequencing of asymmetrically amplified DNA. Thirty-one different haplotypes were identified. The nucleotide diversity for the total sample was estimated to be 2.6 %, which is high relative to other North Atlantic cetaceans. The degree of genetic differentiation in various subsets of the samples was estimated and tested for statistical significance by Monte Carlo simulations. Significant degrees of heterogeneity were found between the Antarctic and all North Atlantic areas, as well as between Iceland and the western North Atlantic samples. A genealogical tree was estimated for the 31 haplotypes and rooted with the homologous sequence from a fin whale Balaenoptera physalus. The branching pattern in the genealogical tree suggests that the North Atlantic Ocean has been populated by 2 independent influxes of humpback whales. The combined results from the homogeneity tests and the genealogical tree indicate that behaviour (in this case maternally directed site fidelity to a foraging area) can influence the population structure of marine cetaceans on an evolutionary time scale

    Distribution of mtDNA haplotypes in North-Atlantic humpback whales:The influence of behavior on population structure

    Get PDF
    Samples from 136 humpback whales Megaptera novaeangliae, representing 5 feeding aggregations in the North Atlantic and 1 in the Antarctic, were analyzed with respect to the sequence variation in the mitochondrial (mt) control region. A total of 288 base pairs was sequenced by direct sequencing of asymmetrically amplified DNA. Thirty-one different haplotypes were identified. The nucleotide diversity for the total sample was estimated to be 2.6 %, which is high relative to other North Atlantic cetaceans. The degree of genetic differentiation in various subsets of the samples was estimated and tested for statistical significance by Monte Carlo simulations. Significant degrees of heterogeneity were found between the Antarctic and all North Atlantic areas, as well as between Iceland and the western North Atlantic samples. A genealogical tree was estimated for the 31 haplotypes and rooted with the homologous sequence from a fin whale Balaenoptera physalus. The branching pattern in the genealogical tree suggests that the North Atlantic Ocean has been populated by 2 independent influxes of humpback whales. The combined results from the homogeneity tests and the genealogical tree indicate that behaviour (in this case maternally directed site fidelity to a foraging area) can influence the population structure of marine cetaceans on an evolutionary time scale

    Molecular Approaches to Identify Cryptic Species and Polymorphic Species within a Complex Community of Fig Wasps

    Get PDF
    Cryptic and polymorphic species can complicate traditional taxonomic research and both of these concerns are common in fig wasp communities. Species identification is very difficult, despite great effort and the ecological importance of fig wasps. Herein, we try to identify all chalcidoid wasp species hosted by one species of fig, using both morphological and molecular methods. We compare the efficiency of four different DNA regions and find that ITS2 is highly effective for species identification, while mitochondrial COI and Cytb regions appear less reliable, possibly due to the interference signals from either nuclear copies of mtDNA, i.e. NUMTs, or the effects of Wolbachia infections. The analyses suggest that combining multiple markers is the best choice for inferring species identifications as any one marker may be unsuitable in a given case

    Extensive population genetic structure in the giraffe

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (<it>Giraffa camelopardalis</it>) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation.</p> <p>Results</p> <p>By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations.</p> <p>Conclusion</p> <p>Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate <it>in situ </it>and <it>ex situ </it>management, not only of pelage morphs, but also of local populations.</p

    Mitochondrial phylogeography of baboons (Papio spp.) – Indication for introgressive hybridization?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Baboons of the genus <it>Papio </it>are distributed over wide ranges of Africa and even colonized parts of the Arabian Peninsula. Traditionally, five phenotypically distinct species are recognized, but recent molecular studies were not able to resolve their phylogenetic relationships. Moreover, these studies revealed para- and polyphyletic (hereafter paraphyletic) mitochondrial clades for baboons from eastern Africa, and it was hypothesized that introgressive hybridization might have contributed substantially to their evolutionary history. To further elucidate the phylogenetic relationships among baboons, we extended earlier studies by analysing the complete mitochondrial cytochrome <it>b </it>gene and the 'Brown region' from 67 specimens collected at 53 sites, which represent all species and which cover most of the baboons' range.</p> <p>Results</p> <p>Based on phylogenetic tree reconstructions seven well supported major haplogroups were detected, which reflect geographic populations and discordance between mitochondrial phylogeny and baboon morphology. Our divergence age estimates indicate an initial separation into southern and northern baboon clades 2.09 (1.54–2.71) million years ago (mya). We found deep divergences between haplogroups within several species (~2 mya, northern and southern yellow baboons, western and eastern olive baboons and northern and southern chacma baboons), but also recent divergence ages among species (< 0.7 mya, yellow, olive and hamadryas baboons in eastern Africa).</p> <p>Conclusion</p> <p>Our study confirms earlier findings for eastern Africa, but shows that baboon species from other parts of the continent are also mitochondrially paraphyletic. The phylogenetic patterns suggest a complex evolutionary history with multiple phases of isolation and reconnection of populations. Most likely all these biogeographic events were triggered by multiple cycles of expansion and retreat of savannah biomes during Pleistocene glacial and inter-glacial periods. During contact phases of populations reticulate events (i.e. introgressive hybridization) were highly likely, similar to ongoing hybridization, which is observed between East African baboon populations. Defining the extent of the introgressive hybridization will require further molecular studies that incorporate additional sampling sites and nuclear loci.</p

    The Evolutionary Dynamics of the Lion Panthera leo Revealed by Host and Viral Population Genomics

    Get PDF
    The lion Panthera leo is one of the world's most charismatic carnivores and is one of Africa's key predators. Here, we used a large dataset from 357 lions comprehending 1.13 megabases of sequence data and genotypes from 22 microsatellite loci to characterize its recent evolutionary history. Patterns of molecular genetic variation in multiple maternal (mtDNA), paternal (Y-chromosome), and biparental nuclear (nDNA) genetic markers were compared with patterns of sequence and subtype variation of the lion feline immunodeficiency virus (FIVPle), a lentivirus analogous to human immunodeficiency virus (HIV). In spite of the ability of lions to disperse long distances, patterns of lion genetic diversity suggest substantial population subdivision (mtDNA ΦST = 0.92; nDNA FST = 0.18), and reduced gene flow, which, along with large differences in sero-prevalence of six distinct FIVPle subtypes among lion populations, refute the hypothesis that African lions consist of a single panmictic population. Our results suggest that extant lion populations derive from several Pleistocene refugia in East and Southern Africa (∼324,000–169,000 years ago), which expanded during the Late Pleistocene (∼100,000 years ago) into Central and North Africa and into Asia. During the Pleistocene/Holocene transition (∼14,000–7,000 years), another expansion occurred from southern refugia northwards towards East Africa, causing population interbreeding. In particular, lion and FIVPle variation affirms that the large, well-studied lion population occupying the greater Serengeti Ecosystem is derived from three distinct populations that admixed recently

    Pan-African Genetic Structure in the African Buffalo (Syncerus caffer): Investigating Intraspecific Divergence

    Get PDF
    The African buffalo (Syncerus caffer) exhibits extreme morphological variability, which has led to controversies about the validity and taxonomic status of the various recognized subspecies. The present study aims to clarify these by inferring the pan-African spatial distribution of genetic diversity, using a comprehensive set of mitochondrial D-loop sequences from across the entire range of the species. All analyses converged on the existence of two distinct lineages, corresponding to a group encompassing West and Central African populations and a group encompassing East and Southern African populations. The former is currently assigned to two to three subspecies (S. c. nanus, S. c. brachyceros, S. c. aequinoctialis) and the latter to a separate subspecies (S. c. caffer). Forty-two per cent of the total amount of genetic diversity is explained by the between-lineage component, with one to seventeen female migrants per generation inferred as consistent with the isolation-with-migration model. The two lineages diverged between 145 000 to 449 000 years ago, with strong indications for a population expansion in both lineages, as revealed by coalescent-based analyses, summary statistics and a star-like topology of the haplotype network for the S. c. caffer lineage. A Bayesian analysis identified the most probable historical migration routes, with the Cape buffalo undertaking successive colonization events from Eastern toward Southern Africa. Furthermore, our analyses indicate that, in the West-Central African lineage, the forest ecophenotype may be a derived form of the savanna ecophenotype and not vice versa, as has previously been proposed. The African buffalo most likely expanded and diverged in the late to middle Pleistocene from an ancestral population located around the current-day Central African Republic, adapting morphologically to colonize new habitats, hence developing the variety of ecophenotypes observed today
    • …
    corecore