33 research outputs found
Recommended from our members
Atmospheric composition and climate impacts of a future hydrogen economy
Hydrogen is expected to play a key role in the global energy transition to net zero emissions in many scenarios. However, fugitive emissions of hydrogen into the atmosphere during its production, storage, distribution and use could reduce the climate benefit and also have implications for air quality. Here we explore the atmospheric composition and climate impacts of increases in atmospheric hydrogen abundance using the UKESM1 chemistry-climate model. We find that increases in hydrogen result in increases in methane, tropospheric ozone and stratospheric water vapour, resulting in a positive radiative forcing. However, some of the impacts of hydrogen leakage are partially offset by potential reductions in emissions of methane, carbon monoxide, nitrogen oxides and volatile organic compounds from the consumption of fossil fuels. We derive a new methodology for determining indirect Global Warming Potentials from steady-state simulations which is applicable to both shorter-lived species and those with intermediate and longer lifetimes, such as hydrogen. Using this methodology, we determine a 100-year Global Warming Potential for hydrogen of 12 ± 6. To maximise the benefit of hydrogen as an energy source, emissions associated with hydrogen leakage and emissions of the ozone precursor gases need to be minimised.</p
Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000â2016 period
The modeling study presented here aims to estimate
how uncertainties in global hydroxyl radical (OH) distributions, variability, and trends may contribute to resolving discrepancies between simulated and observed methane (CH4) changes since 2000. A multi-model ensemble of 14 OH fields was analyzed and aggregated into 64 scenarios
to force the offline atmospheric chemistry transport model
LMDz (Laboratoire de Meteorologie Dynamique) with a
standard CH4 emission scenario over the period 2000â2016.
The multi-model simulated global volume-weighted tropospheric mean OH concentration ([OH]) averaged over 2000â2010 ranges between 8:7*10^5 and 12:8*10^5 molec cm-3.
The inter-model differences in tropospheric OH burden and
vertical distributions are mainly determined by the differences in the nitrogen oxide (NO) distributions, while the spatial discrepancies between OH fields are mostly due to differences in natural emissions and volatile organic compound (VOC) chemistry. From 2000 to 2010, most simulated OH fields show an increase of 0.1â0:3*10^5 molec cm-3 in the tropospheric mean [OH], with year-to-year variations much smaller than during the historical period 1960â2000. Once
ingested into the LMDz model, these OH changes translated
into a 5 to 15 ppbv reduction in the CH4 mixing ratio
in 2010, which represents 7%â20% of the model-simulated
CH4 increase due to surface emissions. Between 2010 and
2016, the ensemble of simulations showed that OH changes
could lead to a CH4 mixing ratio uncertainty of > 30 ppbv.
Over the full 2000â2016 time period, using a common stateof-
the-art but nonoptimized emission scenario, the impact
of [OH] changes tested here can explain up to 54% of the
gap between model simulations and observations. This result
emphasizes the importance of better representing OH abundance and variations in CH4 forward simulations and emission optimizations performed by atmospheric inversions
Recommended from our members
Implementation of U.K. Earth system models for CMIP6
We describe the scientific and technical implementation of two models for a core set of
experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6).
The models used are the physical atmosphere-land-ocean-sea ice model HadGEM3-GC3.1 and the
Earth system model UKESM1 which adds a carbon-nitrogen cycle and atmospheric chemistry to
HadGEM3-GC3.1. The model results are constrained by the external boundary conditions (forcing data)
and initial conditions.We outline the scientific rationale and assumptions made in specifying these.
Notable details of the implementation include an ozone redistribution scheme for prescribed ozone
simulations (HadGEM3-GC3.1) to avoid inconsistencies with the model's thermal tropopause, and land use
change in dynamic vegetation simulations (UKESM1) whose influence will be subject to potential biases in
the simulation of background natural vegetation.We discuss the implications of these decisions for
interpretation of the simulation results. These simulations are expensive in terms of human and CPU
resources and will underpin many further experiments; we describe some of the technical steps taken to
ensure their scientific robustness and reproducibility
Intercomparison of the representations of the atmospheric chemistry of pre-industrial methane and ozone in earth system and other global chemistry-transport models
An intercomparison has been set up to study the representation of the atmospheric chemistry of the pre-industrial troposphere in earth system and other global tropospheric chemistry-transport models. The intercomparison employed a constrained box model and utilised tropospheric trace gas composition data for the pre-industrial times at ninety mid-latitude surface locations. Incremental additions of four organic compounds: methane, ethane, acetone and propane, were used to perturb the constrained box model and generate responses in hydroxyl radicals and tropospheric ozone at each location and with each chemical mechanism. Although the responses agreed well across the chemical mechanisms from the selected earth system and other global tropospheric chemistry-transport models, there were differences in the detailed responses between the chemical mechanisms that could be tracked down by sensitivity analysis to differences in the representation of C1âC3 chemistry. Inter-mechanism ranges in NOx compensation points were about 0.17 ± 0.12 when expressed relative to the inter-mechanism average. Monte Carlo uncertainty analysis carried out with a single chemical mechanism put the intra-mechanism range a factor of three higher at 0.50 ± 0.12
Revisiting the Mystery of Recent Stratospheric Temperature Trends
Simulated stratospheric temperatures over the period 1979â2016 in models from the Chemistry-Climate Model Initiative are compared with recently updated and extended satellite data sets. The multimodel mean global temperature trends over 1979â2005 are -0.88 ± 0.23, -0.70 ± 0.16, and -0.50 ± 0.12 K/decade for the Stratospheric Sounding Unit (SSU) channels 3 (~40â50 km), 2 (~35â45 km), and 1 (~25â35 km), respectively (with 95% confidence intervals). These are within the uncertainty bounds of the observed temperature trends from two reprocessed SSU data sets. In the lower stratosphere, the multimodel mean trend in global temperature for the Microwave Sounding Unit channel 4 (~13â22 km) is -0.25 ± 0.12 K/decade over 1979â2005, consistent with observed estimates from three versions of this satellite record. The models and an extended satellite data set comprised of SSU with the Advanced Microwave Sounding Unit-A show weaker global stratospheric cooling over 1998â2016 compared to the period of intensive ozone depletion (1979â1997). This is due to the reduction in ozone-induced cooling from the slowdown of ozone trends and the onset of ozone recovery since the late 1990s. In summary, the results show much better consistency between simulated and satellite-observed stratospheric temperature trends than was reported by Thompson et al. (2012, https://doi.org/10.1038/nature11579) for the previous versions of the SSU record and chemistry-climate models. The improved agreement mainly comes from updates to the satellite records; the range of stratospheric temperature trends over 1979â2005 simulated in Chemistry-Climate Model Initiative models is comparable to the previous generation of chemistry-climate models
Molecular composition of organic aerosols in central Amazonia: An ultra-high-resolution mass spectrometry study
The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen-and/or sulfur-containing organic species contributed up to 60% of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen-and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic-biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments. © 2016 Author(s)
Recommended from our members
The evaluation of the North Atlantic climate system in UKESM1 historical simulations for CMIP6
Earth System models enable a broad range of climate interactions that physical climate models are unable to simulate. However, the extent to which adding Earth System components changes or improves the simulation of the physical climate is not well understood. Here we present a broad multi-variate evaluation of the North Atlantic climate system in historical simulations of the UK Earth System Model (UKESM1) performed for CMIP6. In particular, we focus on the mean state and the decadal timescale evolution of important variables that span the North Atlantic Climate system. In general, UKESM1 performs well and realistically simulates many aspects of the North Atlantic climate system. Like the physical version of the model, we find that changes in external forcing, and particularly aerosol forcing, are an important driver of multi-decadal change in UKESM1, especially for Atlantic Multi-decadal Variability and the Atlantic Meridional Overturning Circulation. However, many of the shortcomings identified are similar to common biases found in physical climate models, including the physical climate model that underpins UKESM1. For example, the summer jet is too weak and too far poleward; decadal variability in the winter jet is underestimated; intra-seasonal stratospheric polar vortex variability is poorly represented; and Arctic sea ice is too thick. Forced shortwave changes may be also too strong in UKESM1, which, given the important role of historical aerosol forcing in shaping the evolution of the North Atlantic in UKESM1, motivates further investigation. Therefore, physical model development, alongside Earth System development, remains crucial in order to improve climate simulations
Recommended from our members
UKESM1: description and evaluation of the UK Earth System Model
We document the development of the first version of the United Kingdom Earth System Model UKESM1. The model represents a major advance on its predecessor HadGEM2âES, with enhancements to all component models and new feedback mechanisms. These include: a new core physical model with a wellâresolved stratosphere; terrestrial biogeochemistry with coupled carbon and nitrogen cycles and enhanced land management; troposphericâstratospheric chemistry allowing the holistic simulation of radiative forcing from ozone, methane and nitrous oxide; twoâmoment, fiveâspecies, modal aerosol; and ocean biogeochemistry with twoâway coupling to the carbon cycle and atmospheric aerosols. The complexity of coupling between the ocean, land and atmosphere physical climate and biogeochemical cycles in UKESM1 is unprecedented for an Earth system model. We describe in detail the process by which the coupled model was developed and tuned to achieve acceptable performance in key physical and Earth system quantities, and discuss the challenges involved in mitigating biases in a model with complex connections between its components. Overall the model performs well, with a stable preâindustrial state, and good agreement with observations in the latter period of its historical simulations. However, global mean surface temperature exhibits strongerâthanâobserved cooling from 1950 to 1970, followed by rapid warming from 1980 to 2014. Metrics from idealised simulations show a high climate sensitivity relative to previous generations of models: equilibrium climate sensitivity (ECS) is 5.4 K, transient climate response (TCR) ranges from 2.68 K to 2.85 K, and transient climate response to cumulative emissions (TCRE) is 2.49 K/TtC to 2.66 K/TtC
Potential Role of Stabilized Criegee Radicals in Sulfuric Acid Production in a High Biogenic VOC Environment
We present field observations made in June 2011 downwind of Dallas-Fort Worth, TX, and evaluate the role of stabilized Criegee radicals (sCIs) in gaseous sulfuric acid (H2SO4) production. Zero-dimensional model calculations show that sCI from biogenic volatile organic compounds composed the majority of the sCIs. The main uncertainty associated with an evaluation of H2SO4 production from the sCI reaction channel is the lack of experimentally determined reaction rates for sCIs formed from isoprene ozonolysis with SO2 along with systematic discrepancies in experimentally derived reaction rates between other sCIs and SO2 and water vapor. In general, the maximum of H2SO4 production from the sCI channel is found in the late afternoon as ozone increases toward the late afternoon. The sCI channel, however, contributes minor H2SO4 production compared with the conventional OH channel in the mid-day. Finally, the production and the loss rates of H2SO4 are compared. The application of the recommended mass accommodation coefficient causes significant overestimation of H2SO4 loss rates compared with H2SO4 production rates. However, the application of a lower experimental value for the mass accommodation coefficient provides good agreement between the loss and production rates of H2SO4. The results suggest that the recommended coefficient for the H2O surface may not be suitable for this relatively dry environment